Patents by Inventor Christoph Schelling

Christoph Schelling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120132925
    Abstract: A method for manufacturing a semiconductor structure is provided which includes the following steps: a crystalline semiconductor substrate (1) is supplied; a porous region (10) is provided adjacent to a surface (OF) of the semiconductor substrate (1); a dopant (12) is introduced into the porous region (10) from the surface (OF); and the porous region (10) is thermally recrystallized into a crystalline doping region (10?) of the semiconductor substrate (1) whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate (1). A corresponding semiconductor structure is likewise provided.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 31, 2012
    Inventors: Gerhard Lammel, Hubert Benzel, Matthias Illing, Franz Laermer, Silvia Kronmueller, Paul Farber, Simon Armbruster, Ralf Reichenbach, Christoph Schelling, Ando Feyh
  • Patent number: 8148234
    Abstract: A method for manufacturing a semiconductor structure is provided which includes the following operations: supplying a crystalline semiconductor substrate, providing a porous region adjacent to a surface of the semiconductor substrate, introducing a dopant into the porous region from the surface, and thermally recrystallizing the porous region into a crystalline doping region of the semiconductor substrate whose doping type and/or doping concentration and/or doping distribution are/is different from those or that of the semiconductor substrate. A corresponding semiconductor structure is likewise provided.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: April 3, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Gerhard Lammel, Hubert Benzel, Matthias Illing, Franz Laermer, Silvia Kronmueller, Paul Farber, Simon Armbruster, Ralf Reichenbach, Christoph Schelling, Ando Feyh
  • Publication number: 20110220471
    Abstract: A micromechanical component, e.g., a switch, includes a substrate having at least one recess, at least two electrically conductive contact surfaces provided in the region of the recess, and an actuator. The contact surfaces are able to be brought into contact with one another for electrical conduction with the aid of the actuator.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 15, 2011
    Inventors: Hubert Benzel, Christoph Schelling
  • Patent number: 7989263
    Abstract: In a method for manufacturing a micromechanical chip, a sacrificial layer and an epitaxy layer are initially applied to a semiconductor substrate to produce a layer stack. An opening is subsequently introduced into the epitaxy layer from the front side of the layer stack. In order to electrically insulate the subsequent filling of the opening using a conductive contact layer from the material of the epitaxy layer, the walls of the opening are provided with an insulating layer. For removing the sacrificial layer and thus for producing the chip, separation trenches are subsequently etched through the epitaxy layer to the sacrificial layer also from the front side of the layer stack, which separation trenches also delimit the lateral extension of the chip.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: August 2, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Kramer, Christoph Schelling, Christina Leinenbach
  • Publication number: 20110163396
    Abstract: The present invention relates to a manufacturing method for a micromechanical component, a corresponding composite component, and a corresponding micromechanical component.
    Type: Application
    Filed: April 21, 2009
    Publication date: July 7, 2011
    Applicant: ROBERT BOSCH GMBH
    Inventors: Hubert Benzel, Frank Henning, Armin Scharping, Christoph Schelling
  • Publication number: 20110147862
    Abstract: In a micromechanical component having an inclined structure and a corresponding manufacturing method, the component includes a substrate having a surface; a first anchor, which is provided on the surface of the substrate and which extends away from the substrate; and at least one cantilever, which is provided on a lateral surface of the anchor, and which points at an inclination away from the anchor.
    Type: Application
    Filed: November 28, 2008
    Publication date: June 23, 2011
    Inventors: Tjalf Pirk, Stefan Pinter, Hubert Benzel, Herbert Weber, Michael Krueger, Robert Sattler, Frederic Njikam Njimonzie, Joerg Muchow, Joachim Fritz, Christoph Schelling, Christoph Friese
  • Publication number: 20110115095
    Abstract: In a method is for producing through contacts in thin chips, whose functionality is implemented in a layer structure starting from the surface layer of a semiconductor substrate, to separate these chips, the surface layer is structured using the layer structure and at least one cavity is produced below the surface layer, so that the individual chips are defined by trenches opening into the cavity and the individual chips are connected via support elements in the area of the cavity to the substrate below the cavity. The chips are provided with through contacts, in that firstly a contact hole, which extends through the entire layer structure of the chip and opens into a support element, is produced for each through contact. At least one dielectric layer is applied to the thus structured layer structure and in particular to the wall of the contact holes and structured in accordance with the electrical connections to be created between areas of the chip surface and at least one through contact.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 19, 2011
    Inventors: Hubert Benzel, Karl-Heinz Kraft, Christoph Schelling
  • Patent number: 7918136
    Abstract: A micromechanical sensor element (1) is provided, which has a sealed diaphragm (2) affixed in a frame (3), exhibits high sensitivity at high overload resistance and has a small size, and which allows a piezoresistive measured-value acquisition. To this end, at least one carrier element (4), which is connected to the frame (3) via at least one connection link (5), is formed in the region of the diaphragm (2). Furthermore, piezoresistors (6) for detecting a deformation are situated in the region of the connection link (5).
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: April 5, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Joerg Muchow, Hubert Benzel, Simon Armbruster, Christoph Schelling
  • Patent number: 7902615
    Abstract: A micromechanical structure and a method for producing a micromechanical structure are provided, the micromechanical structure being configured for receiving and/or generating acoustic signals in a medium at least partially surrounding the structure. The structure includes a first counterelement that has first openings and essentially forms a first side of the structure, a second counterelement that has second openings and essentially forms a second side of the structure, and an essentially closed diaphragm disposed between the first counterelement and the second counterelement.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: March 8, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Roman Schlosser, Stefan Weiss, Frank Fischer, Christoph Schelling
  • Publication number: 20110002359
    Abstract: A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.
    Type: Application
    Filed: April 23, 2007
    Publication date: January 6, 2011
    Inventors: Hubert Benzel, Simon Armbruster, Arnim Hoechst, Christoph Schelling, Ando Feyh
  • Patent number: 7863072
    Abstract: A method for producing a micromechanical diaphragm sensor, and a micromechanical diaphragm sensor produced with the method. The micromechanical diaphragm sensor has at least one first diaphragm as well as a second diaphragm, which is disposed essentially on top of the first diaphragm. Furthermore, the micromechanical diaphragm sensor has a first cavity and a second cavity, which is essentially disposed above the first cavity.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: January 4, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Illing, Heribert Weber, Christoph Schelling, Heiko Stahl, Stefan Weiss
  • Patent number: 7843025
    Abstract: A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 30, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Patent number: 7834409
    Abstract: A micromechanical component having a conductive substrate, an elastically deflectable diaphragm including at least one conductive layer, which is provided over a front side of the substrate, the conductive layer being electrically insulated from the substrate, a hollow space, which is provided between the substrate and the diaphragm and is filled with a medium, and a plurality of perforation openings, which run under the diaphragm through the substrate, the perforation openings providing access to the hollow space from a back surface of the substrate, so that a volume of the medium located in the hollow space may change when the diaphragm is deflected. Also described is a corresponding manufacturing method.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: November 16, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Frank Reichenbach, Franz Laermer, Silvia Kronmueller, Christoph Schelling, Tino Fuchs, Christina Leinenbach
  • Patent number: 7755152
    Abstract: A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: July 13, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20100164027
    Abstract: A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer.
    Type: Application
    Filed: November 28, 2007
    Publication date: July 1, 2010
    Inventors: Torsten Kramer, Kathrin Knese, Hubert Benzel, Gregor Schuermann, Simon Armbruster, Christoph Schelling
  • Publication number: 20100084722
    Abstract: In a method for manufacturing a micromechanical chip, a sacrificial layer and an epitaxy layer are initially applied to a semiconductor substrate to produce a layer stack. An opening is subsequently introduced into the epitaxy layer from the front side of the layer stack. In order to electrically insulate the subsequent filling of the opening using a conductive contact layer from the material of the epitaxy layer, the walls of the opening are provided with an insulating layer. For removing the sacrificial layer and thus for producing the chip, separation trenches are subsequently etched through the epitaxy layer to the sacrificial layer also from the front side of the layer stack, which separation trenches also delimit the lateral extension of the chip.
    Type: Application
    Filed: August 31, 2009
    Publication date: April 8, 2010
    Inventors: Torsten KRAMER, Christoph SCHELLING, Christina LEINENBACH
  • Publication number: 20100035068
    Abstract: A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
    Type: Application
    Filed: April 27, 2007
    Publication date: February 11, 2010
    Inventors: Gerhard Lammel, Hubert Benzel, Matthias Illing, Franz Laermer, Silvia Kronmueller, Paul Farber, Simon Armbruster, Ralf Reichenbach, Christoph Schelling, Ando Feyh
  • Patent number: 7647832
    Abstract: A micromechanical device and a method for producing this device are provided, the device having a sensor pattern that includes a spring pattern and a seismic mass. The seismic mass may be connected to the substrate material via the spring pattern, and a clearance may be provided in a direction perpendicular to the major substrate plane between the spring pattern and the substrate material. Alternatively, the spring pattern and the seismic mass may have a common, essentially continuous, front side surface.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 19, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Joerg Muchow, Hubert Benzel, Markus Lang, Regina Grote, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Volkmar Senz
  • Publication number: 20100002543
    Abstract: A micromechanical structure and a method for producing a micromechanical structure are provided, the micromechanical structure being configured for receiving and/or generating acoustic signals in a medium at least partially surrounding the structure. The structure includes a first counterelement that has first openings and essentially forms a first side of the structure, a second counterelement that has second openings and essentially forms a second side of the structure, and an essentially closed diaphragm disposed between the first counterelement and the second counterelement.
    Type: Application
    Filed: November 14, 2006
    Publication date: January 7, 2010
    Inventors: Roman Schlosser, Stefan Weiss, Frank Fischer, Christoph Schelling
  • Publication number: 20090256219
    Abstract: A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
    Type: Application
    Filed: June 24, 2009
    Publication date: October 15, 2009
    Inventors: Hubert BENZEL, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas