Patents by Inventor Christophe J. Chevallier

Christophe J. Chevallier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9830985
    Abstract: Methods to maintain values representing data in a memory are disclosed. A method may include identifying a plurality of in-use portions of the memory currently used to store data and recording which in-use portion was a last portion of the memory to be rewritten. Responsive to a trigger signal, data is read from a selected one of the in-use portions of the memory adjacent to the last portion. The method may also include storing the read data into a buffer to form buffered data, and rewriting the buffered data into the memory.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: November 28, 2017
    Assignee: Unity Semiconductor Corporation
    Inventors: Christophe J. Chevallier, Robert Norman
  • Patent number: 9831425
    Abstract: A memory using mixed valence conductive oxides is disclosed. The memory includes a mixed valence conductive oxide that is less conductive in its oxygen deficient state and a mixed electronic ionic conductor that is an electrolyte to oxygen and promotes an electric field effective to cause oxygen ionic motion.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: November 28, 2017
    Assignee: Unity Semiconductor Corporation
    Inventors: Darrell Rinerson, Christophe J. Chevallier, Wayne Kinney, Roy Lambertson, John E. Sanchez, Jr., Lawrence Schloss, Philip Swab, Edmond Ward
  • Patent number: 9806130
    Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: October 31, 2017
    Assignee: Unity Semiconductor Corporation
    Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
  • Publication number: 20170287534
    Abstract: A flash memory system for use in an electronic system comprising an integrated circuit such as a microcontroller. The flash memory system embodies one or more circuits adapted to operate at sub- or near-threshold voltage levels. These low-power circuits are selectively activated or de-activated to balance power dissipation with the response time of the memory system required in particular applications.
    Type: Application
    Filed: August 23, 2016
    Publication date: October 5, 2017
    Applicant: Ambiq Micro, Inc
    Inventors: Christophe J. Chevallier, Daniel M. Cermak, Scott Hanson
  • Patent number: 9779788
    Abstract: A flash memory system for use in an electronic system comprising an integrated circuit such as a microcontroller. The flash memory system embodies one or more circuits adapted to operate at sub- or near-threshold voltage levels. These low-power circuits are selectively activated or de-activated to balance power dissipation with the response time of the memory system required in particular applications.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: October 3, 2017
    Assignee: Ambiq Micro, Inc.
    Inventors: Christophe J. Chevallier, Daniel M. Cermak, Scott Hanson
  • Patent number: 9748223
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: August 29, 2017
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Publication number: 20170179197
    Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.
    Type: Application
    Filed: December 29, 2016
    Publication date: June 22, 2017
    Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F.S. Swab, Edmond R. Ward
  • Publication number: 20170162261
    Abstract: Methods to maintain values representing data in a memory are disclosed. A method may include identifying a plurality of in-use portions of the memory currently used to store data and recording which in-use portion was a last portion of the memory to be rewritten. Responsive to a trigger signal, data is read from a selected one of the in-use portions of the memory adjacent to the last portion. The method may also include storing the read data into a buffer to form buffered data, and rewriting the buffered data into the memory.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 8, 2017
    Inventors: Christophe J. Chevallier, Robert Norman
  • Publication number: 20170148782
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Publication number: 20170148795
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Publication number: 20170140816
    Abstract: A memory is described having an array including two-terminal resistive memory elements (MEs) to retain stored data in an absence of electrical power and a disturb isolator circuit operatively coupled to the MEs to compensate for disturbances of a magnitude of a signal associated with a selected two-terminal resistive memory element in the array.
    Type: Application
    Filed: December 1, 2016
    Publication date: May 18, 2017
    Inventors: Christophe J. Chevallier, Chang Hua Siau
  • Patent number: 9613968
    Abstract: A memory cell based upon thyristors for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM. Special circuitry provides lowered power consumption during standby.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: April 4, 2017
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Patent number: 9570165
    Abstract: A memory device includes an array of resistive memory cells. Each resistive memory cell in the array includes a first resistive memory element, a second resistive memory element, and a two-terminal switching element. The first resistive memory element is electrically coupled to the second resistive memory element and to the switching element at a common node.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 14, 2017
    Assignee: Rambus Inc.
    Inventors: Deepak Chandra Sekar, Gary Bela Bronner, Christophe J. Chevallier, Lidia Vereen, Philip F. S. Swab, Elizabeth Friend, Mehmet Gunhan Ertosun
  • Patent number: 9570515
    Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 14, 2017
    Assignee: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
  • Patent number: 9564441
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: February 7, 2017
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Patent number: 9564198
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: February 7, 2017
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Patent number: 9514811
    Abstract: Systems, integrated circuits, and methods to generate access signals to facilitate memory operations in scaled arrays of memory elements, are described. In at least some embodiments, a non-volatile memory device can include a cross-point array having resistive memory elements and an access signal generator. The access signal generator can be configured to access a resistive memory element in the cross-point array.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: December 6, 2016
    Assignee: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Christophe J. Chevallier, Chang Hua Siau
  • Patent number: 9496020
    Abstract: A memory cell based upon cross-coupled thyristors for an SRAM integrated circuit can be implemented in different combinations of MOS and bipolar select transistors with the thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM cells.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: November 15, 2016
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Patent number: 9460771
    Abstract: A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with the thyristor in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM cells.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: October 4, 2016
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier
  • Patent number: 9449669
    Abstract: A memory cell based upon thyristors for an SRAM integrated circuit can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM cells. Special circuitry provides lowered power consumption during standby.
    Type: Grant
    Filed: January 6, 2015
    Date of Patent: September 20, 2016
    Assignee: Kilopass Technology, Inc.
    Inventors: Harry Luan, Bruce L. Bateman, Valery Axelrad, Charlie Cheng, Christophe J. Chevallier