Patents by Inventor Christopher B. Wilkerson

Christopher B. Wilkerson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11899613
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: February 13, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11875836
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: January 16, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11869562
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: January 9, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11841757
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: December 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11844223
    Abstract: A ferroelectric memory chiplet in a multi-dimensional packaging. The multi-dimensional packaging includes a first die comprising a switch and a first plurality of input-output transceivers. The multi-dimensional packaging includes a second die comprising a processor, wherein the second die includes a second plurality of input-output transceivers coupled to the first plurality of input-output transceivers. The multi-dimensional packaging includes a third die comprising a coherent cache or memory-side buffer, wherein the coherent cache or memory-side buffer comprises ferroelectric memory cells, wherein the coherent cache or memory-side buffer is coupled to the second die via I/Os. The dies are wafer-to-wafer bonded or coupled via micro-bumps, copper-to-copper hybrid bond, or wire bond, Flip-chip ball grid array routing, chip-on-wafer substrate, or embedded multi-die interconnect bridge.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: December 12, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11829699
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: November 28, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11823725
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: November 21, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11816036
    Abstract: Method and system for performing data movement operations is described herein. One embodiment of a method includes: storing data for a first memory address in a cache line of a memory of a first processing unit, the cache line associated with a coherency state indicating that the memory has sole ownership of the cache line; decoding an instruction for execution by a second processing unit, the instruction comprising a source data operand specifying the first memory address and a destination operand specifying a memory location in the second processing unit; and responsive to executing the decoded instruction, copying data from the cache line of the memory of the first processing unit as identified by the first memory address, to the memory location of the second processing unit, wherein responsive to the copy, the cache line is to remain in the memory and the coherency state is to remain unchanged.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Anil Vasudevan, Venkata Krishnan, Andrew J. Herdrich, Ren Wang, Robert G. Blankenship, Vedaraman Geetha, Shrikant M. Shah, Marshall A. Millier, Raanan Sade, Binh Q. Pham, Olivier Serres, Chyi-Chang Miao, Christopher B. Wilkerson
  • Patent number: 11790969
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: October 17, 2023
    Assignee: KEPLER COMPUTING INC.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11791233
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: October 17, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11694940
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: July 4, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 11670352
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: June 6, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Publication number: 20220392507
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 8, 2022
    Applicant: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Publication number: 20220261351
    Abstract: Method and system for performing data movement operations is described herein. One embodiment of a method includes: storing data for a first memory address in a cache line of a memory of a first processing unit, the cache line associated with a coherency state indicating that the memory has sole ownership of the cache line; decoding an instruction for execution by a second processing unit, the instruction comprising a source data operand specifying the first memory address and a destination operand specifying a memory location in the second processing unit; and responsive to executing the decoded instruction, copying data from the cache line of the memory of the first processing unit as identified by the first memory address, to the memory location of the second processing unit, wherein responsive to the copy, the cache line is to remain in the memory and the coherency state is to remain unchanged.
    Type: Application
    Filed: May 6, 2022
    Publication date: August 18, 2022
    Applicant: Intel Corporation
    Inventors: Anil Vasudevan, Venkata Krishnan, Andrew J. Herdrich, Ren Wang, Robert G. Blankenship, Vedaraman Geetha, Shrikant M. Shah, Marshall A. Millier, Raanan Sade, Binh Q. Pham, Olivier Serres, Chyi-Chang Miao, Christopher B. Wilkerson
  • Patent number: 11373728
    Abstract: Logic (apparatus and/or software) is provided that separates read and restore operations. When a read is completed, the read data is stored in a restore buffer allowing other latency critical operations such as reads to be serviced before the restore. Deferring restore operations minimizes latency and burst bandwidth for reads and minimizes the performance impact of the non-critical restore operations.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: June 28, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Rajeev Kumar Dokania, Sasikanth Manipatruni, Amrita Mathuriya
  • Patent number: 11373727
    Abstract: Logic (apparatus and/or software) is provided that separates read and restore operations. When a read is completed, the read data is stored in a restore buffer allowing other latency critical operations such as reads to be serviced before the restore. Deferring restore operations minimizes latency and burst bandwidth for reads and minimizes the performance impact of the non-critical restore operations.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: June 28, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Rajeev Kumar Dokania, Sasikanth Manipatruni, Amrita Mathuriya
  • Patent number: 11366589
    Abstract: Logic (apparatus and/or software) is provided that separates read and restore operations. When a read is completed, the read data is stored in a restore buffer allowing other latency critical operations such as reads to be serviced before the restore. Deferring restore operations minimizes latency and burst bandwidth for reads and minimizes the performance impact of the non-critical restore operations.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: June 21, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Rajeev Kumar Dokania, Sasikanth Manipatruni, Amrita Mathuriya
  • Patent number: 11327894
    Abstract: Method and system for performing data movement operations is described herein. One embodiment of a method includes: storing data for a first memory address in a cache line of a memory of a first processing unit, the cache line associated with a coherency state indicating that the memory has sole ownership of the cache line; decoding an instruction for execution by a second processing unit, the instruction comprising a source data operand specifying the first memory address and a destination operand specifying a memory location in the second processing unit; and responsive to executing the decoded instruction, copying data from the cache line of the memory of the first processing unit as identified by the first memory address, to the memory location of the second processing unit, wherein responsive to the copy, the cache line is to remain in the memory and the coherency state is to remain unchanged.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: May 10, 2022
    Assignee: Intel Corporation
    Inventors: Anil Vasudevan, Venkata Krishnan, Andrew J. Herdrich, Ren Wang, Robert G. Blankenship, Vedaraman Geetha, Shrikant M. Shah, Marshall A. Millier, Raanan Sade, Binh Q. Pham, Olivier Serres, Chyi-Chang Miao, Christopher B. Wilkerson
  • Patent number: 11295796
    Abstract: Endurance mechanisms are introduced for memories such as non-volatile memories for broad usage including caches, last-level cache(s), embedded memory, embedded cache, scratchpads, main memory, and storage devices. Here, non-volatile memories (NVMs) include magnetic random-access memory (MRAM), resistive RAM (ReRAM), ferroelectric RAM (FeRAM), phase-change memory (PCM), etc. In some cases, features of endurance mechanisms (e.g., randomizing mechanisms) are applicable to volatile memories such as static random-access memory (SRAM), and dynamic random-access memory (DRAM). The endurance mechanisms include a wear leveling scheme that uses index rotation, outlier compensation to handle weak bits, and random swap injection to mitigate wear out attacks.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: April 5, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Christopher B. Wilkerson, Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya
  • Patent number: 11042403
    Abstract: A computing platform, including: an execution unit to execute a program, the program including a first phase and a second phase; and a quick response module (QRM) to: receive a program phase signature for the first phase; store the program phase signature in a pattern match action (PMA) table; identify entry of the program into the first phase via the PMA; and apply an optimization to the computing platform.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: June 22, 2021
    Assignee: Intel Corporation
    Inventors: Christopher B. Wilkerson, Karl I. Taht, Ren Wang, James J. Greensky, Tsung-Yuan C. Tai