Patents by Inventor Christopher C. Parks

Christopher C. Parks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11941191
    Abstract: Button functionalities for user interfaces, e.g., for use with a portable multifunction device, are disclosed. Exemplary button functionalities are described for an electronic device with a display, a rotatable and depressible input mechanism, and/or a button. Different device features may be accessed, depending on whether the rotatable and depressible input mechanism or the button is activated, and further depending on whether the activation represents a single press, a double press, or an extended press on the rotatable and depressible input mechanism or the button.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: March 26, 2024
    Assignee: Apple Inc.
    Inventors: Christopher Patrick Foss, Anton M. Davydov, Dylan Ross Edwards, Imran Chaudhri, Alan C. Dye, Jonathan P. Ive, Stephen O. Lemay, Kevin M. Lynch, Lawrence Y. Yang, Dennis S. Park
  • Patent number: 10483205
    Abstract: An opening is formed within a substrate made of a silicon material, and a cleaning process is performed; after which, the bottom and walls of the opening are contaminated with oxygen and fluorine particles. A lower blocking layer is formed within the opening, and the lower blocking layer contacts the bottom and walls of the opening. Also, a middle liner layer is formed within the opening, and the middle liner layer contacts the lower blocking layer. Additionally, an upper blocking layer is formed within the opening, and the upper blocking layer contacts the middle liner layer. Further, a conductor layer is formed within the opening, and the conductor layer contacts the upper blocking layer. The lower blocking layer prevents the fluorine particles from affecting the other layers.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 19, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Donghun Kang, Neal A. Makela, Christopher C. Parks
  • Publication number: 20180182711
    Abstract: An opening is formed within a substrate made of a silicon material, and a cleaning process is performed; after which, the bottom and walls of the opening are contaminated with oxygen and fluorine particles. A lower blocking layer is formed within the opening, and the lower blocking layer contacts the bottom and walls of the opening. Also, a middle liner layer is formed within the opening, and the middle liner layer contacts the lower blocking layer. Additionally, an upper blocking layer is formed within the opening, and the upper blocking layer contacts the middle liner layer. Further, a conductor layer is formed within the opening, and the conductor layer contacts the upper blocking layer. The lower blocking layer prevents the fluorine particles from affecting the other layers.
    Type: Application
    Filed: February 22, 2018
    Publication date: June 28, 2018
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Donghun Kang, Neal A. Makela, Christopher C. Parks
  • Patent number: 9960118
    Abstract: An opening is formed within a substrate made of a silicon material, and a cleaning process is performed; after which, the bottom and walls of the opening are contaminated with oxygen and fluorine particles. A lower blocking layer is formed within the opening, and the lower blocking layer contacts the bottom and walls of the opening. Also, a middle liner layer is formed within the opening, and the middle liner layer contacts the lower blocking layer. Additionally, an upper blocking layer is formed within the opening, and the upper blocking layer contacts the middle liner layer. Further, a conductor layer is formed within the opening, and the conductor layer contacts the upper blocking layer. The lower blocking layer prevents the fluorine particles from affecting the other layers.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 1, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Donghun Kang, Neal A. Makela, Christopher C. Parks
  • Publication number: 20170207175
    Abstract: An opening is formed within a substrate made of a silicon material, and a cleaning process is performed; after which, the bottom and walls of the opening are contaminated with oxygen and fluorine particles. A lower blocking layer is formed within the opening, and the lower blocking layer contacts the bottom and walls of the opening. Also, a middle liner layer is formed within the opening, and the middle liner layer contacts the lower blocking layer. Additionally, an upper blocking layer is formed within the opening, and the upper blocking layer contacts the middle liner layer. Further, a conductor layer is formed within the opening, and the conductor layer contacts the upper blocking layer. The lower blocking layer prevents the fluorine particles from affecting the other layers.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Donghun Kang, Neal A. Makela, Christopher C. Parks
  • Patent number: 8563446
    Abstract: A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Jacob B. Dadson, Paul J. Higgins, Babar A. Khan, John J. Moore, Christopher C. Parks, Rohit S. Takalkar
  • Patent number: 8431476
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 30, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Patent number: 8415772
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Publication number: 20120309153
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Application
    Filed: August 9, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Publication number: 20120305989
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Application
    Filed: August 9, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Patent number: 8273649
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Publication number: 20120228736
    Abstract: A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
    Type: Application
    Filed: May 18, 2012
    Publication date: September 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ashima B. Chakravarti, Jacob B. Dadson, Paul J. Higgins, Babar A. Khan, John J. Moore, Christopher C. Parks, Rohit S. Takalkar
  • Patent number: 8236710
    Abstract: A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Jacob B. Dadson, Paul J. Higgins, Babar A. Khan, John J. Moore, Christopher C. Parks, Rohit S. Takalkar
  • Publication number: 20120086103
    Abstract: A method for forming a trench structure is provided for a semiconductor and/or memory device, such as an DRAM device. In one embodiment, the method for forming a trench structure includes forming a trench in a semiconductor substrate, and exposing the sidewalls of the trench to an arsenic-containing gas to adsorb an arsenic containing layer on the sidewalls of the trench. A material layer is then deposited on the sidewalls of the trench to encapsulate the arsenic-containing layer between the material layer and sidewalls of the trench.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: International Business Machines Corporation
    Inventors: ASHIMA B. CHAKRAVARTI, Jacob B. Dadson, Paul J. Higgins, Babar A. Khan, John J. Moore, Christopher C. Parks, Rohit S. Takalkar
  • Patent number: 7843067
    Abstract: The present disclosure relates to a microelectronic structure and the manufacture of the microelectronic structure. Specifically, the disclosure relates to an interconnect barrier layer between a rhodium contact structure and a copper interconnect structure in a microelectronic structure. The microelectronic structure provides for low resistance in microelectronic devices.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: November 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Balasubramanian Haran, Christopher C. Parks, Xiaoyan Shao, Eva E. Simonyi
  • Publication number: 20100123205
    Abstract: A method of preventing surface decomposition of a III-V compound semiconductor is provided. The method includes forming a silicon film having a thickness from 10 ? to 400 ? on a surface of an III-V compound semiconductor. After forming the silicon film onto the surface of the III-V compound semiconductor, a high performance semiconductor device including, for example, a MOSFET, can be formed on the capped/passivated III-V compound semiconductor. During the MOSFET fabrication, a high k dielectric can be formed on the capped/passivated III-V compound semiconductor and thereafter, activated source and drain regions can be formed into the III-V compound semiconductor.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Keith E. Fogel, Edward W. Kiewra, Steven J. Koester, Christopher C. Parks, Devendra K. Sadana, Shahab Siddiqui
  • Publication number: 20090239062
    Abstract: The present disclosure relates to a microelectronic structure and the manufacture of the microelectronic structure. Specifically, the disclosure relates to an interconnect barrier layer between a rhodium contact structure and a copper interconnect structure in a microelectronic structure. The microelectronic structure provides for low resistance in microelectronic devices.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Inventors: John M. Cotte, Balasubramanian Haran, Christopher C. Parks, Xiaoyan Shao, Eva E. Simonyi
  • Patent number: 7585765
    Abstract: An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the surface oxidation problem of plating a conductive material onto a noble metal seed layer are provided. In accordance with the present invention, a hydrogen plasma treatment is used to treat a noble metal seed layer such that the treated noble metal seed layer is highly resistant to surface oxidation. The inventive oxidation-resistant noble metal seed layer has a low C content and/or a low nitrogen content.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: September 8, 2009
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Nancy R. Klymko, Christopher C. Parks, Keith Kwong Hon Wong
  • Patent number: 7276796
    Abstract: An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the surface oxidation problem of plating a conductive material onto a noble metal seed layer are provided. In accordance with the present invention, a hydrogen plasma treatment is used to treat a noble metal seed layer such that the treated noble metal seed layer is highly resistant to surface oxidation. The inventive oxidation-resistant noble metal seed layer has a low C content and/or a low nitrogen content.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Nancy R. Klymko, Christopher C. Parks, Keith Kwong Hon Wong
  • Patent number: 7227265
    Abstract: Interconnect structures with copper conductors being at least substantially free of internal seams or voids are obtained employing an electroplating copper bath containing dissolved cupric salt wherein the concentration of the salt is at least about 0.4 molar and up to about 0.5 molar concentration of an acid. Also provided are copper damascene structures having an aspect ratio of greater than about 3 and a width of less than about 0.275 ?m and via openings filled with electroplated copper than is substantially free of internal seams or voids.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: June 5, 2007
    Assignee: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Steven H. Boettcher, Dean S. Chung, Hariklia Deligianni, James E. Fluegel, Wilma Jean Horkans, Keith T. Kwietniak, Peter S. Locke, Christopher C. Parks, Soon-Cheon Seo, Andrew H. Simon, Erick G. Walton