Patents by Inventor Christopher C. Parks

Christopher C. Parks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6815343
    Abstract: A method of substantially reducing and/or eliminating the amount of defects and/or impurities that amass at interfacial surfaces that are present in a multilayer structure is provided. Specifically, the method improves the efficiency of a forming gas anneal by providing a multilayer structure having a catalytic layer formed thereon or buried therein which allows for a significant increase in the amount of hydrogen or deuterium which can be incorporated into the structure. The method is also conducted at a low temperature (on the order of about 400° C. or less). Multilayer structures are also provided which include an annealed multilayer structure having at least one interfacial surface present therein. The at least one material interface contains a region of hydrogen or deuterium which substantially reduces defects and impurities present at the at least one interface.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: November 9, 2004
    Assignee: International Business Machines Corporation
    Inventors: John D. Baniecki, Robert B. Laibowitz, Christopher C. Parks, Thomas M. Shaw
  • Patent number: 6797582
    Abstract: A 3D microelectronic structure is provided which includes a substrate having at least one opening present therein, the at least one opening having sidewalls which extend to a common bottom wall; and a thermal nitride layer present on at least an upper portion of each sidewall of openings. A method for fabricating the above-mentioned 3D microelectronic structure is also provided. Specifically, the method includes a step of selectively forming a thermal nitride layer on at least an upper portion of each sidewall of an opening formed in a substrate.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: September 28, 2004
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Michael P. Chudzik, Rajarao Jammy, Christopher C. Parks, Kenneth T. Settlemyer, Jr., Radhika Srinivasan, Kathryn H. Varian
  • Publication number: 20040178077
    Abstract: Interconnect structures with copper conductors being at least substantially free of internal seams or voids are obtained employing an electroplating copper bath containing dissolved cupric salt wherein the concentration of the salt is at least about 0.4 molar and up to about 0.5 molar concentration of an acid. Also provided are copper damascene structures having an aspect ratio of greater than about 3 and a width of less than about 0.275 &mgr;m and via openings filled with electroplated copper than is substantially free of internal seams or voids.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Applicant: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Steven H. Boettcher, Dean S. Chung, Hariklia Deligianni, James E. Fluegel, Wilma Jean Horkans, Keith T. Kwietniak, Peter S. Locke, Christopher C. Parks, Soon-Cheon Seo, Andrew H. Simon, Erick G. Walton
  • Publication number: 20040178078
    Abstract: Interconnect structures with copper conductors being at least substantially free of internal seams or voids are obtained employing an electroplating copper bath containing dissolved cupric salt wherein the concentration of the salt is at least about 0.4 molar and up to about 0.5 molar concentration of an acid. Also provided are copper damascene structures having an aspect ratio of greater than about 3 and a width of less than about 0.275 &mgr;m and via openings filled with electroplated copper than is substantially free of internal seams or voids.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Applicant: International Business Machines Corporation
    Inventors: Panayotis C. Andricacos, Steven H. Boettcher, Dean S. Chung, Hariklia Deligianni, James E. Fluegel, Wilma Jean Horkans, Keith T. Kwietniak, Peter S. Locke, Christopher C. Parks, Soon-Cheon Seo, Andrew H. Simon, Erick G. Walton
  • Publication number: 20040126939
    Abstract: A method of substantially reducing and/or eliminating the amount of defects and/or impurities that amass at interfacial surfaces that are present in a multilayer structure is provided. Specifically, the method improves the efficiency of a forming gas anneal by providing a multilayer structure having a catalytic layer formed thereon or buried therein which allows for a significant increase in the amount of hydrogen or deuterium which can be incorporated into the structure. The method is also conducted at a low temperature (on the order of about 400° C. or less). Multilayer structures are also provided which include an annealed multilayer structure having at least one interfacial surface present therein. The at least one material interface contains a region of hydrogen or deuterium which substantially reduces defects and impurities present at the at least one interface.
    Type: Application
    Filed: December 30, 2002
    Publication date: July 1, 2004
    Inventors: John D. Baniecki, Robert B. Laibowitz, Christopher C. Parks, Thomas M. Shaw
  • Publication number: 20030203587
    Abstract: A 3D microelectronic structure is provided which includes a substrate having at least one opening present therein, the at least one opening having sidewalls which extend to a common bottom wall; and a thermal nitride layer present on at least an upper portion of each sidewall of openings. A method for fabricating the above-mentioned 3D microelectronic structure is also provided. Specifically, the method includes a step of selectively forming a thermal nitride layer on at least an upper portion of each sidewall of an opening formed in a substrate.
    Type: Application
    Filed: April 30, 2003
    Publication date: October 30, 2003
    Inventors: Oleg Gluschenkov, Michael P. Chudzik, Rajarao Jammy, Christopher C. Parks, Kenneth T. Settlemyer, Radhika Srinivasan, Kathryn H. Varian
  • Publication number: 20030107111
    Abstract: A 3D microelectronic structure is provided which includes a substrate having at least one opening present therein, the at least one opening having sidewalls which extend to a common bottom wall; and a thermal nitride layer present on at least an upper portion of each sidewall of openings. A method for fabricating the above-mentioned 3D microelectronic structure is also provided. Specifically, the method includes a step of selectively forming a thermal nitride layer on at least an upper portion of each sidewall of an opening formed in a substrate.
    Type: Application
    Filed: December 10, 2001
    Publication date: June 12, 2003
    Applicant: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Michael P. Chudzik, Rajarao Jammy, Christopher C. Parks, Kenneth T. Settlemyer, Radhika Srinivasan, Kathryn H. Varian
  • Patent number: 6572982
    Abstract: An electromigration-resistant copper film structure and the process for forming the structure. The film structure contains a high impurity content, is resistant to grain growth, and possesses superior metallurgical, thermo-mechanical, and electrical properties. The process comprises the steps of: (a) providing a seed layer at least indirectly on a substrate, the seed layer having an exposed surface; (b) immersing the substrate in a plating solution; (c) electrodepositing a copper-containing film on the exposed surface of the seed layer, the copper-containing film having a first surface; (d) maintaining the substrate in an immersed state within the plating solution; (e) electrodepositing a further copper-containing film from the plating solution onto the first surface; (f) removing the substrate from the plating solution; and (g) drying the substrate.
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: June 3, 2003
    Assignee: International Business Machines Corporation
    Inventors: Cyprian E. Uzoh, Steven H. Boettcher, Patrick W. DeHaven, Christopher C. Parks, Andrew H. Simon
  • Patent number: 6399434
    Abstract: Semiconductor structures having improved dopant configurations are obtained by use of barrier layers containing silicon, nitrogen, and oxygen atoms and having a thickness of about 5 to 50 Å. A doped semiconductor structure with controlled dopant configuration can be formed by: (a) providing a first semiconductor material region, (b) forming an interface layer comprising silicon, oxygen, and nitrogen on the first region, (c) forming a second semiconductor material region on the interface layer, the second semiconductor material region being on an opposite side of the interface layer from the first semiconductor material region, (d) providing a dopant in the second region, and (e) heating the first and second regions whereby at least a portion of the dopant diffuses from the second region through the interface layer to the first region.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: June 4, 2002
    Assignee: International Business Machines Corporation
    Inventors: Susan E. Chaloux, Johnathan E. Faltermeier, Ulrike Gruening, Rajarao Jammy, Christopher C. Parks, Paul Parries, Paul A. Ronsheim, Jean-Marc Rousseau
  • Patent number: 6358855
    Abstract: A method for cleaning an oxidized diffusion barrier layer, in accordance with the present invention, includes providing a conductive diffusion barrier layer employed for preventing oxygen and metal diffusion therethrough and providing a wet chemical etchant including hydrofluoric acid. The diffusion barrier layer is etched with the wet chemical etchant to remove oxides from the diffusion barrier layer such that by employing the wet chemical etchant linear electrical behavior is achieved through the diffusion barrier layer.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: March 19, 2002
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Ravikumar Ramachandran, Nicolas Nagel, Christopher C. Parks
  • Patent number: 6194736
    Abstract: Reduced scale structures of improved reliability and/or increased composition options are enabled by the creation and use of quantum conductive recrystallization barrier layers. The quantum conductive layers are preferably used in trench capacitors to act as recrystallization barriers.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: February 27, 2001
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Susan E. Chaloux, Tze-Chiang Chen, Johnathan E. Faltermeier, Ulrike Gruening, Rajarao Jammy, Jack A. Mandelman, Christopher C. Parks, Paul C. Parries, Paul A. Ronsheim, Yun-Yu Wang
  • Patent number: 6123825
    Abstract: An electromigration-resistant copper film structure and the process for forming the structure. The film structure contains a high impurity content, is resistant to grain growth, and possesses superior metallurgical, thermo-mechanical, and electrical properties. The process comprises the steps of: (a) providing a seed layer at least indirectly on a substrate, the seed layer having an exposed surface; (b) immersing the substrate in a plating solution; (c) electrodepositing a copper-containing film on the exposed surface of the seed layer, the copper-containing film having a first surface; (d) maintaining the substrate in an immersed state within the plating solution; (e) electrodepositing a further copper-containing film from the plating solution onto the first surface; (f) removing the substrate from the plating solution; and (g) drying the substrate.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: September 26, 2000
    Assignee: International Business Machines Corporation
    Inventors: Cyprian E. Uzoh, Steven H. Boettcher, Patrick W. DeHaven, Christopher C. Parks, Andrew H. Simon
  • Patent number: 5998253
    Abstract: A method for controlling dopant outdiffusion within an integrated circuit is disclosed. The method includes providing a substrate, forming a trench in the substrate, and forming a first doped layer in the trench. The first doped layer has a first dopant concentration. The method further includes forming a dopant diffusion control structure above the first doped layer. The dopant diffusion control structure includes silicon nitride (Si.sub.x N.sub.y) disposed in grain boundaries of the first doped layer. The method also includes forming a second layer above the dopant diffusion control structure. The second layer has a second dopant concentration lower than the first dopant concentration. Forming the dopant diffusion control structure includes, in one example, forming a first oxide layer over the first doped silicon layer, nitridizing the first oxide layer, thereby forming an oxynitride (SiO.sub.x N.sub.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: December 7, 1999
    Assignees: Siemens Aktiengesellschaft, International Business Machines Corporation
    Inventors: Stephen K. Loh, Christine Dehm, Christopher C. Parks
  • Patent number: 5907777
    Abstract: The preferred embodiment provides a method for fabricating field effect transistors that have different threshold voltages without requiring excessive masking and other fabrication steps. In particular, the method facilitates the formation of FETs with different threshold voltages by doping the gate dielectric with various amounts of ions. This provides a built in potential in the gate dielectric proportional to the amount of ions in the gate dielectric. This potential changes the threshold voltage of the FET. Thus, by selectively doping the gate dielectric with ions the threshold voltage of a FET can be changed. The selective doping of many FETs to many different threshold voltages can be done with only one additional masking step. Thus, the present invention provides the ability to form FETs having different threshold voltages without requiring excessive process complexity.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: May 25, 1999
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Joseph, Christopher C. Parks
  • Patent number: 5374481
    Abstract: A polyemitter structure having a thin interfacial layer deposited between the polysilicon emitter contact and the crystalline silicon emitter, as opposed to a regrown SiO.sub.x layer, has improved reproducibility and performance characteristics. A n-doped hydrogenated microcrystalline silicon film can be used as the deposited interfacial film between a crystalline silicon emitter and a polycrystalline silicon contact.
    Type: Grant
    Filed: August 5, 1993
    Date of Patent: December 20, 1994
    Assignee: International Business Machines Corporation
    Inventors: Shwu Jen Jeng, Jerzy Kanicki, David E. Kotecki, Christopher C. Parks, Zu-Jean Tien
  • Patent number: 5192708
    Abstract: A method of providing sublayer contacts in vertical walled trenches is proposed. In accordance with the present invention, the phosphorus doped amorphous silicon is deposited at temperatures less than 570.degree. C. The conversion into the extremely large crystal low resistivity polysilicon is accomplished by a low temperature anneal at 400.degree. C. to 500.degree. C. for several hours and a short rapid thermal anneal (RTA) treatment at a high temperature approximately 850.degree. C. for twenty seconds. These two conversion heat treatments are done at sufficiently low thermal budget to prevent any significant dopant movement within a shallow junction transistor. After anneal, the excess low resistivity silicon is planarized away by known techniques such as chemical/mechanical polishing.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: March 9, 1993
    Assignee: International Business Machines Corporation
    Inventors: Klaus Beyer, Edward C. Fredericks, Louis L. Hsu, David E. Kotecki, Christopher C. Parks