Patents by Inventor Christopher D. Sheraw

Christopher D. Sheraw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100207683
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7763518
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7691716
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7674720
    Abstract: Methods are disclosed for providing stacking fault reduced epitaxially grown silicon for use in hybrid surface orientation structures. In one embodiment, a method includes depositing a silicon nitride liner over a silicon oxide liner in an opening, etching to remove the silicon oxide liner and silicon nitride liner on a lower surface of the opening, undercutting the silicon nitride liner adjacent to the lower surface, and epitaxially growing silicon in the opening. The silicon is substantially reduced of stacking faults because of the negative slope created by the undercut.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: March 9, 2010
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc.
    Inventors: Yun-Yu Wang, Linda Black, Judson R. Holt, Woo-Hyeong Lee, Scott Luning, Christopher D. Sheraw
  • Publication number: 20090189242
    Abstract: Disclosed are embodiments of a hybrid-orientation technology (HOT) wafer and a method of forming the HOT wafer with improved shallow trench isolation (STI) structures for patterning devices in both silicon-on-insulator (SOI) regions, having a first crystallographic orientation, and bulk regions, having a second crystallographic orientation. The improved STI structures are formed using a non-selective etch process to ensure that all of the STI structures and, particularly, the STI structures at the SOI-bulk interfaces, each extend to the semiconductor substrate and have an essentially homogeneous (i.e., single material) and planar (i.e., divot-free) bottom surface that is approximately parallel to the top surface of the substrate. Optionally, an additional selective etch process can be used to extend the STI structures a predetermined depth into the substrate.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory Costrini, David M. Dobuzinsky, Thomas S. Kanarsky, Munir D. Naeem, Christopher D. Sheraw, Richard Wise
  • Publication number: 20090090974
    Abstract: A dual stress liner structure having a substantially planar interface between liners and a related method are disclosed. In one embodiment, a dual stress liner structure may include a tensile stress liner over an NFET, the NFET including a PFET adjacent thereto; and a compressive stress liner over the PFET, wherein an upper surface of the compressive stress liner is substantially planar with an upper surface of the tensile stress liner at an interface therebetween.
    Type: Application
    Filed: October 8, 2007
    Publication date: April 9, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory Costrini, David M. Fried, Werner A. Rausch, Christopher D. Sheraw
  • Patent number: 7498256
    Abstract: Contact via structures using a hybrid barrier layer, are disclosed. One contact via structure includes: an opening through a dielectric to a silicide region; a first layer in the opening in direct contact with the silicide region, wherein the first layer is selected from the group consisting of: titanium (Ti) and tungsten nitride (WN); at least one second layer over the first layer, the at least one second layer selected from the group consisting of: tantalum nitride (TaN), titanium nitride (TiN), tantalum (Ta), ruthenium (Ru), rhodium (Rh), platinum (Pt) and cobalt (Co); a seed layer for copper (Cu); and copper (Cu) filling a remaining portion of the opening.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: March 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Randolph F. Knarr, Christopher D. Sheraw, Andrew H. Simon, Anna Topol, Yun-Yu Wang, Keith Kwong Hon Wong
  • Patent number: 7494918
    Abstract: Semiconductor structures and methods for fabrication thereof are predicated upon epitaxial growth of an epitaxial surface semiconductor layer upon a semiconductor substrate having a first crystallographic orientation. The semiconductor substrate is exposed within an aperture within a semiconductor-on-insulator structure. The epitaxial surface semiconductor layer alternatively contacts or is isolated from a surface semiconductor layer having a second crystallographic orientation within the semiconductor-on-insulator structure. A recess of the semiconductor surface layer with respect to a buried dielectric layer thereunder and a hard mask layer thereover provides for inhibited second crystallographic phase growth within the epitaxial surface semiconductor layer.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: February 24, 2009
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc. (AMD)
    Inventors: Byeong Y. Kim, Xiaomeng Chen, Judson R. Holt, Christopher D. Sheraw, Linda Black, Igor Peidous
  • Patent number: 7491598
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits, as well as methods for forming such CMOS circuits. More specifically, the present invention relates to CMOS circuits that contain passive elements, such as buried resistors, capacitors, diodes, inductors, attenuators, power dividers, and antennas, etc., which are characterized by an end contact resistance of less than 90 ohm-microns. Such a low end resistance can be achieved either by reducing the spacer widths of the passive elements to a range of from about 10 nm to about 30 nm, or by masking the passive elements during a pre-amorphization implantation step, so that the passive elements are essentially free of pre-amorphization implants.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Christopher D. Sheraw, Alyssa C. Bonnoit, K. Paul Muller, Werner Rausch
  • Patent number: 7485537
    Abstract: The present invention provides a a method of fabricating bipolar junction transistors (BJTs) on selected areas of a very thin buried oxide (BOX) using a conventional silicon-on-insulator (SOI) starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080268609
    Abstract: Methods are disclosed for providing stacking fault reduced epitaxially grown silicon for use in hybrid surface orientation structures. In one embodiment, a method includes depositing a silicon nitride liner over a silicon oxide liner in an opening, etching to remove the silicon oxide liner and silicon nitride liner on a lower surface of the opening, undercutting the silicon nitride liner adjacent to the lower surface, and epitaxially growing silicon in the opening. The silicon is substantially reduced of stacking faults because of the negative slope created by the undercut.
    Type: Application
    Filed: June 2, 2008
    Publication date: October 30, 2008
    Inventors: Yun-Yu Wang, Linda Black, Judson R. Holt, Woo-Hyeong Lee, Scott Luning, Christopher D. Sheraw
  • Publication number: 20080261371
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080230869
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 25, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080132025
    Abstract: The present invention provides a “collector-less” silcon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BIJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7375410
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7361959
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits, as well as methods for forming such CMOS circuits. More specifically, the present invention relates to CMOS circuits that contain passive elements, such as buried resistors, capacitors, diodes, inductors, attenuators, power dividers, and antennas, etc., which are characterized by an end contact resistance of less than 90 ohm-microns. Such a low end resistance can be achieved either by reducing the spacer widths of the passive elements to a range of from about 10 nm to about 30 nm, or by masking the passive elements during a pre-amorphization implantation step, so that the passive elements are essentially free of pre-amorphization implants.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: April 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: Christopher D. Sheraw, Alyssa C. Bonnoit, K. Paul Muller, Werner Rausch
  • Publication number: 20080087961
    Abstract: Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a <110> crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the <110> crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 17, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC. (AMD)
    Inventors: Yun-Yu Wang, Christopher D. Sheraw, Anthony G. Domenicucci, Linda Black, Judson R. Holt, David M. Fried
  • Publication number: 20080083952
    Abstract: Semiconductor structures and methods for fabrication thereof are predicated upon epitaxial growth of an epitaxial surface semiconductor layer upon a semiconductor substrate having a first crystallographic orientation. The semiconductor substrate is exposed within an aperture within a semiconductor-on-insulator structure. The epitaxial surface semiconductor layer alternatively contacts or is isolated from a surface semiconductor layer having a second crystallographic orientation within the semiconductor-on-insulator structure. A recess of the semiconductor surface layer with respect to a buried dielectric layer thereunder and a hard mask layer thereover provides for inhibited second crystallographic phase growth within the epitaxial surface semiconductor layer.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC. (AMD)
    Inventors: Byeong Y. Kim, Xiaomeng Chen, Judson R. Holt, Christopher D. Sheraw, Linda Black, Igor Peidous
  • Publication number: 20080042291
    Abstract: Contact via structures using a hybrid barrier layer, are disclosed. One contact via structure includes: an opening through a dielectric to a silicide region; a first layer in the opening in direct contact with the silicide region, wherein the first layer is selected from the group consisting of: titanium (Ti) and tungsten nitride (WN); at least one second layer over the first layer, the at least one second layer selected from the group consisting of: tantalum nitride (TaN), titanium nitride (TiN), tantalum (Ta), ruthenium (Ru), rhodium (Rh), platinum (Pt) and cobalt (Co); a seed layer for copper (Cu); and copper (Cu) filling a remaining portion of the opening.
    Type: Application
    Filed: August 21, 2006
    Publication date: February 21, 2008
    Inventors: Randolph F. Knarr, Christopher D. Sheraw, Andrew H. Simon, Anna Topol, Yun-Yu Wang, Keith Kwong Hon Wong
  • Publication number: 20080006876
    Abstract: Methods and a structure are disclosed for providing stacking fault reduced epitaxially grown silicon for use in hybrid surface orientation structures. In one embodiment, a method includes depositing a silicon nitride liner over a silicon oxide liner in an opening, etching to remove the silicon oxide liner and silicon nitride liner on a lower surface of the opening, undercutting the silicon nitride liner adjacent to the lower surface, and epitaxially growing silicon in the opening. The silicon is substantially reduced of stacking faults because of the negative slope created by the undercut.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Yun-Yu Wang, Linda Black, Judson R. Holt, Woo-Hyeong Lee, Scott Luning, Christopher D. Sheraw