Patents by Inventor Christopher E. Foskey

Christopher E. Foskey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150239555
    Abstract: In some embodiments, a rotorcraft may include a yoke, a blade, a spindle associated with the yoke, and an elastomeric bearing assembly. The center length of the spindle may define a center axis that passes through a center of the elastomeric bearing assembly. The elastomeric bearing assembly may contain a housing coupled to the blade and disposed around the center axis that is configured to rotate in relation to the center axis. The elastomeric bearing assembly may contain an elastomeric shear bearing that has an interior portion coupled to the spindle and an exterior portion coupled to the housing. The elastomeric bearing assembly may contain an elastomeric centrifugal force bearing pressed against the housing. The shear bearing may be configured to counteract a torsional force, and the centrifugal force bearing may be configured to counteract a compression force.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Inventors: Christopher E. Foskey, Michael J. Southerland
  • Publication number: 20140271203
    Abstract: An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is fixed relative to the mast. An apparatus comprising a hub configured to couple to a mast, a grip configured to couple to the hub and a rotor blade, a pitch actuator coupled to the grip and configured to change a pitch of the rotor blade relative to the mast, and a delta-3 restraint coupled to the pitch actuator, wherein the delta-3 restraint is configured to control the pitch of the blade relative to the mast when the pitch actuator fails, and wherein the delta-3 restraint provides an instantaneous blade pitch-flap coupling response.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Christopher E. Foskey, Frank B. Stamps
  • Publication number: 20140064960
    Abstract: In accordance with one embodiment of the present application, an actuation system is configured for actuation of an airfoil member with a flap mechanism. The actuation system can include an upper drive tape and a lower drive tape, each partially wrapped around a first bearing and second bearing. An inboard frame can be actuated by at least one linear actuator. Similarly, an outboard frame can be actuated by at least one linear actuator. The inboard frame is coupled to the upper drive tape, while the outboard frame is coupled to the lower drive tape. An actuation of the inboard frame and outboard frame in a reciprocal manner acts move a flap input lever reciprocally upward and downward. A flap mechanism is configured to convert the movement of the flap input lever into rotational movements of the airfoil member.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Troy C. Schank, Peter H. Kintzinger, Jonathan A. Knoll, Christopher E. Foskey
  • Publication number: 20140064965
    Abstract: In accordance with one embodiment of the present application, an actuation system is configured for actuation of an airfoil member with a flap mechanism. The actuation system can include an upper drive tape and a lower drive tape, each partially wrapped around a first bearing and second bearing. An inboard frame can be actuated by at least one linear actuator. Similarly, an outboard frame can be actuated by at least one linear actuator. The inboard frame is coupled to the upper drive tape, while the outboard frame is coupled to the lower drive tape. An actuation of the inboard frame and outboard frame in a reciprocal manner acts move a flap input lever reciprocally upward and downward. A flap mechanism is configured to convert the movement of the flap input lever into rotational movements of the airfoil member.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Troy C. Schank, Peter H. Kintzinger, Jonathan A. Knoll, Christopher E. Foskey
  • Publication number: 20140060249
    Abstract: In accordance with one embodiment of the present application, an actuation system is configured for actuation of an airfoil member with a flap mechanism. The actuation system can include an upper drive tape and a lower drive tape, each partially wrapped around a first bearing and second bearing. An inboard frame can be actuated by at least one linear actuator. Similarly, an outboard frame can be actuated by at least one linear actuator. The inboard frame is coupled to the upper drive tape, while the outboard frame is coupled to the lower drive tape. An actuation of the inboard frame and outboard frame in a reciprocal manner acts move a flap input lever reciprocally upward and downward. A flap mechanism is configured to convert the movement of the flap input lever into rotational movements of the airfoil member.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Troy C. Schank, Peter H. Kintzinger, Jonathan A. Knoll, Christopher E. Foskey