Patents by Inventor Christopher J. Larsen
Christopher J. Larsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12038317Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.Type: GrantFiled: August 9, 2022Date of Patent: July 16, 2024Assignee: Micro Motion, Inc.Inventors: Timothy J. Cunningham, David J. Kapolnek, Matthew J. Rensing, Christopher George Larsen
-
Patent number: 12041775Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.Type: GrantFiled: September 19, 2022Date of Patent: July 16, 2024Assignee: Lodestar Licensing Group LLCInventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
-
Publication number: 20240188299Abstract: Methods, systems, and devices for three-dimensional memory array formation techniques are described. A memory device may include a stack of materials over a substrate. The memory device may include an array of first pillars and an array of second pillars extending at least partially through the stack of materials. One or more first pillars may be excluded from one or more columns of pillars of the array first pillars. The memory device may include dielectric material in a slit extending at least partially through the stack of materials. Based on the exclusion of the one or more first pillars, the slit may have a greater width at a first portion through the stack of materials than a second portion through the stack of materials. The dielectric material located in the slit may also have a greater width at the first portion than at the second portion.Type: ApplicationFiled: November 30, 2023Publication date: June 6, 2024Inventors: Christopher J. Larsen, S M Istiaque Hossain, David A. Daycock, Kevin R. Gast, George Matamis, Lingyu Kong, Sok Han Wong, Lhaang Chee Ooi, Wenjie Li
-
Publication number: 20240130132Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.Type: ApplicationFiled: December 20, 2023Publication date: April 18, 2024Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anikumar Chandolu, Wesley O. Mckinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
-
Patent number: 11871575Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.Type: GrantFiled: June 14, 2022Date of Patent: January 9, 2024Assignee: Micron Technology, Inc.Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
-
Patent number: 11785775Abstract: A method of forming a microelectronic device includes forming a microelectronic device structure. The microelectronic device structure includes a stack structure having an alternating sequence of conductive structures and insulative structures, an upper stadium structure, a lower stadium structure, and a crest region defined between a first stair step structure of the upper stadium structure and a second stair step structure of the lower stadium structure. The stack structure further includes pillar structures extending through the stack structure and dielectric structures interposed between neighboring pillar structures within the upper stadium structure. The method further includes forming a trench in the crest region of the stack structure between two dielectric structures of the dielectric structures on opposing sides of another dielectric structure and filling the trench with a dielectric material. The trench partially overlaps with the dielectric structures.Type: GrantFiled: January 20, 2021Date of Patent: October 10, 2023Assignee: Micron Technology, Inc.Inventors: Lifang Xu, Shuangqiang Luo, Harsh Narendrakumar Jain, Nancy M. Lomeli, Christopher J. Larsen
-
Publication number: 20230301081Abstract: A microelectronic device comprises a stack structure comprising blocks separated from one another by dielectric slot structures. At least one of the blocks comprises two crest regions, a stadium structure interposed between the two crest regions in a first horizontal direction, and two bridge regions neighboring opposing sides of the stadium structure in a second horizontal direction. A filled trench vertically overlies and is within horizontal boundaries of the stadium structure of the at least one of the blocks. The filled trench comprises a dielectric liner material on the opposing staircase structures of the stadium structure and on inner sidewalls of the two bridge regions, and dielectric structures on and having a different material composition than the dielectric liner material. The dielectric structures are substantially confined within horizontal areas of the steps of the stadium structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.Type: ApplicationFiled: May 22, 2023Publication date: September 21, 2023Inventors: Christopher J. Larsen, Lifang Xu
-
Patent number: 11665894Abstract: A microelectronic device comprises a stack structure comprising blocks separated from one another by dielectric slot structures. At least one of the blocks comprises two crest regions, a stadium structure interposed between the two crest regions in a first horizontal direction, and two bridge regions neighboring opposing sides of the stadium structure in a second horizontal direction. A filled trench vertically overlies and is within horizontal boundaries of the stadium structure of the at least one of the blocks. The filled trench comprises a dielectric liner material on the opposing staircase structures of the stadium structure and on inner sidewalls of the two bridge regions, and dielectric structures on and having a different material composition than the dielectric liner material. The dielectric structures are substantially confined within horizontal areas of the steps of the stadium structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.Type: GrantFiled: March 4, 2021Date of Patent: May 30, 2023Assignee: Micron Technology, Inc.Inventors: Christopher J. Larsen, Lifang Xu
-
Publication number: 20230017241Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.Type: ApplicationFiled: September 19, 2022Publication date: January 19, 2023Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
-
Patent number: 11482536Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.Type: GrantFiled: July 23, 2020Date of Patent: October 25, 2022Assignee: Micron Technology, Inc.Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
-
Publication number: 20220310632Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.Type: ApplicationFiled: June 14, 2022Publication date: September 29, 2022Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. Mckinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
-
Publication number: 20220285378Abstract: A microelectronic device comprises a stack structure comprising blocks separated from one another by dielectric slot structures. At least one of the blocks comprises two crest regions, a stadium structure interposed between the two crest regions in a first horizontal direction, and two bridge regions neighboring opposing sides of the stadium structure in a second horizontal direction. A filled trench vertically overlies and is within horizontal boundaries of the stadium structure of the at least one of the blocks. The filled trench comprises a dielectric liner material on the opposing staircase structures of the stadium structure and on inner sidewalls of the two bridge regions, and dielectric structures on and having a different material composition than the dielectric liner material. The dielectric structures are substantially confined within horizontal areas of the steps of the stadium structure. Memory devices, electronic systems, and methods of forming microelectronic devices are also described.Type: ApplicationFiled: March 4, 2021Publication date: September 8, 2022Inventors: Christopher J. Larsen, Lifang XU
-
Publication number: 20220278214Abstract: Methods of forming semiconductor devices, memory cells, and arrays of memory cells include forming a liner on a conductive material and exposing the liner to a radical oxidation process to densify the liner. The densified liner may protect the conductive material from substantial degradation or damage during a subsequent patterning process. A semiconductor device structure, according to embodiments of the disclosure, includes features extending from a substrate and spaced by a trench exposing a portion of a substrate. A liner is disposed on sidewalls of a region of at least one conductive material in each feature. A semiconductor device, according to embodiments of the disclosure, includes memory cells, each comprising a control gate region and a capping region with substantially aligning sidewalls and a charge structure under the control gate region.Type: ApplicationFiled: May 20, 2022Publication date: September 1, 2022Inventors: Christopher J. Larsen, David A. Daycock, Kunal Shrotri
-
Publication number: 20220231031Abstract: A method of forming a microelectronic device includes forming a microelectronic device structure. The microelectronic device structure includes a stack structure having an alternating sequence of conductive structures and insulative structures, an upper stadium structure, a lower stadium structure, and a crest region defined between a first stair step structure of the upper stadium structure and a second stair step structure of the lower stadium structure. The stack structure further includes pillar structures extending through the stack structure and dielectric structures interposed between neighboring pillar structures within the upper stadium structure. The method further includes forming a trench in the crest region of the stack structure between two dielectric structures of the dielectric structures on opposing sides of another dielectric structure and filling the trench with a dielectric material. The trench partially overlaps with the dielectric structures.Type: ApplicationFiled: January 20, 2021Publication date: July 21, 2022Inventors: Lifang Xu, Shuangqiang Luo, Harsh Narendrakumar Jain, Nancy M. Lomeli, Christopher J. Larsen
-
Patent number: 11387245Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.Type: GrantFiled: April 17, 2020Date of Patent: July 12, 2022Assignee: Micron Technology, Inc.Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
-
Patent number: 11355607Abstract: Methods of forming semiconductor devices, memory cells, and arrays of memory cells include forming a liner on a conductive material and exposing the liner to a radical oxidation process to densify the liner. The densified liner may protect the conductive material from substantial degradation or damage during a subsequent patterning process. A semiconductor device structure, according to embodiments of the disclosure, includes features extending from a substrate and spaced by a trench exposing a portion of a substrate. A liner is disposed on sidewalls of a region of at least one conductive material in each feature. A semiconductor device, according to embodiments of the disclosure, includes memory cells, each comprising a control gate region and a capping region with substantially aligning sidewalls and a charge structure under the control gate region.Type: GrantFiled: October 5, 2015Date of Patent: June 7, 2022Assignee: Micron Technology, Inc.Inventors: Christopher J. Larsen, David A. Daycock, Kunal Shrotri
-
Publication number: 20220028881Abstract: An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.Type: ApplicationFiled: July 23, 2020Publication date: January 27, 2022Inventors: S M Istiaque Hossain, Tom J. John, Darwin A. Clampitt, Anilkumar Chandolu, Prakash Rau Mokhna Rau, Christopher J. Larsen, Kye Hyun Baek
-
Publication number: 20210327885Abstract: An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.Type: ApplicationFiled: April 17, 2020Publication date: October 21, 2021Inventors: S M Istiaque Hossain, Christopher J. Larsen, Anilkumar Chandolu, Wesley O. McKinsey, Tom J. John, Arun Kumar Dhayalan, Prakash Rau Mokhna Rau
-
Patent number: 10790290Abstract: A 3D NAND storage device includes a plurality of layers containing doped semiconductor material interleaved with a plurality of layers of dielectric material. Each of the pillars forming the 3D NAND storage device includes a plurality of memory cells and a drain-end select gate (SGD). The pillars are separated by a hollow channel in which a plurality of film layers, including at least a lower film layer and an upper film layer have been deposited. The systems and methods described herein remove at least the upper film layer proximate the SGD while maintaining the film layers proximate the memory cells. Such an arrangement beneficially permits tailoring the film layers proximate the SGD prior to depositing the channel film layer in the hollow channel. The systems and methods described herein permit the deposition of a continuous channel film layer proximate both the memory cells and the SGD.Type: GrantFiled: September 29, 2017Date of Patent: September 29, 2020Assignee: Intel CorporationInventors: David A. Daycock, Purnima Narayanan, John Hopkins, Guoxing Duan, Barbara L. Casey, Christopher J. Larsen, Meng-Wei Kuo, Qian Tao
-
Patent number: 10762939Abstract: Computer memory technology is disclosed. In one example, a method for isolating computer memory blocks in a memory array from one another can include forming an opening between adjacent blocks of memory structures. The method can also include forming a protective liner layer on at least the memory structures. The method can further include disposing isolating material in the opening and on the protective liner layer. The method can even further include removing the isolating material on the protective liner layer. The method can additionally include removing the protective liner layer on the memory structures. Associated devices and systems are also disclosed.Type: GrantFiled: July 1, 2017Date of Patent: September 1, 2020Assignee: Intel CorporationInventors: Christopher J. Larsen, David A. Daycock, Qian Tao, Saniya Rathod, Devesh K. Datta, Srivardhan Gowda, Rithu K. Bhonsle