Patents by Inventor Christopher L. Chua

Christopher L. Chua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020084525
    Abstract: A passive semiconductor device structure is made using planar lateral oxidation to define a buried oxidized semiconductor structure such as a passive waveguide, microlens or DBR mirror stack.
    Type: Application
    Filed: December 27, 1999
    Publication date: July 4, 2002
    Inventors: CHRISTOPHER L. CHUA, PHILIP D. FLOYD, THOMAS L. PAOLI, DECAI SUN
  • Publication number: 20020080554
    Abstract: A new type of high-Q variable capacitor includes a substrate, a first electrically conductive layer fixed to the substrate, a dielectric layer fixed to a portion of the electrically conductive layer, and a second electrically conductive layer having an anchor portion and a free portion. The anchor portion is fixed to the dielectric layer and the free portion is initially fixed to the dielectric layer, but is released from the dielectric layer to become separated from the dielectric layer, and wherein an inherent stress profile in the second electrically conductive layer biases the free portion away from the a dielectric layer. When a bias voltage is applied between the first electrically conductive layer and the second electrically conductive layer, electrostatic forces in the free portion bend the free portion towards the first electrically conductive layer, thereby increasing the capacitance of the capacitor.
    Type: Application
    Filed: October 11, 2001
    Publication date: June 27, 2002
    Applicant: Xerox Corporation.
    Inventors: Christopher L. Chua, Eric Peeters, Koenraad F. Schuylenbergh, Donald L. Smith
  • Patent number: 6396677
    Abstract: A new type of high-Q variable capacitor includes a substrate, a first electrically conductive layer fixed to the substrate, a dielectric layer fixed to a portion of the electrically conductive layer, and a second electrically conductive layer having an anchor portion and a free portion. The anchor portion is fixed to the dielectric layer and the free portion is initially fixed to the dielectric layer, but is released from the dielectric layer to become separated from the dielectric layer, and wherein an inherent stress profile in the second electrically conductive layer biases the free portion away from the dielectric layer. When a bias voltage is applied between the first electrically conductive layer and the second electrically conductive layer, electrostatic forces in the free portion bend the free portion towards the first electrically conductive layer, thereby increasing the capacitance of the capacitor.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Xerox Corporation
    Inventors: Christopher L. Chua, Eric Peeters, Koenraad F. Van Schuylenbergh, Donald L. Smith
  • Patent number: 6392524
    Abstract: An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. Alternately, the loop winding can be formed of two elastic members in which the free ends are joined in mid-air. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: May 21, 2002
    Assignee: Xerox Corporation
    Inventors: David K. Biegelsen, Christopher L. Chua, David K. Fork
  • Patent number: 6372356
    Abstract: Compliant substrates include a compliant single crystal layer formed on an amorphous buffer layer, which is formed on a single crystal base layer. The compliant single crystal layer can be used as a template to support the growth of one or more lattice mismatched layers on the compliant substrate. Various electronic and optoelectronic devices including, for example, photodetectors, long-wavelength semiconductor light-emitting devices, short-wavelength semiconductor light-emitting devices, optical modulators and transistors, can be formed on the compliant substrates. The compliant substrates can be produced by epitaxially forming an intermediate single crystal layer, that can be treated to convert it to an amorphous layer, between two single crystal layers, and treating the intermediate single crystal layer to form an amorphous buffer layer.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 16, 2002
    Assignee: Xerox Corporation
    Inventors: Robert L. Thornton, Christopher L. Chua
  • Patent number: 6355497
    Abstract: A technique based on etching a release layer, for separating the nearly lattice matched substrate from a base substrate is disclosed. A nearly lattice matched substrate for the epitaxial growth of Group-III nitride semiconductor devices and method of fabricating the nearly lattice matched substrate and devices is disclosed. Enhanced ELOG methods are used to create low defect density GaN films. The GaN films are used to grow Group-III nitride LEDs and laser diodes.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: March 12, 2002
    Assignee: Xerox Corporation
    Inventors: Linda T. Romano, Brent S. Krusor, Christopher L. Chua, Noble M. Johnson, Rose M. Wood, Jack Walker
  • Publication number: 20020003231
    Abstract: A light-producing device integrated with a power monitoring system include a light-producing device from which light is emitted in wavelengths that can range from approximately 700 nm to approximately 3 microns. A semi-transparent sensor is located such that at least a portion of the light emitted passes through the semi-transparent sensor and at least a portion of light is absorbed by the semi-transparent sensor. The semi-transparent sensor is configured to be semi-transparent at wavelengths that can range from 700 nm to 3 microns. The semi-transparent sensor may also be used with an external light source, for example with fiber-optic cables.
    Type: Application
    Filed: August 8, 2001
    Publication date: January 10, 2002
    Applicant: XEROX CORPORATION
    Inventors: Decai Sun, Eric Peeters, Christopher L. Chua, Francesco Lemmi, Patrick Y. Maeda, Scott Solberg
  • Publication number: 20010053620
    Abstract: A method and apparatus for interconnecting at least two devices. Each of the interconnected devices includes a contact structure for electrically and/or physically interconnecting the devices. Preferably, the contact structure for at least one of the devices includes a spring contact. An adhesive, such as a UV-curable adhesive, is applied to at least a portion of one of the devices, and once the adhesive is applied, the devices are assembled, i.e., brought into sufficient proximity so that the contact structures interconnect the devices. The adhesive can be applied directly to contact structures of one of the devices and/or can be applied to other portions of the devices so that the adhesive flows around the contact structures during assembly. The adhesive is then cured to bond the devices together.
    Type: Application
    Filed: February 28, 2001
    Publication date: December 20, 2001
    Applicant: Xerox Corporation
    Inventors: Christopher L. Chua, David K. Fork, Patrick G. Kim, Linda Romano
  • Patent number: 6304588
    Abstract: The polarization instability inherent in laterally-oxidized VCSELs may be mitigated by employing an appropriately-shaped device aperture, a misoriented substrate, one or more cavities or employing the shaped device aperture together with a misoriented substrate and/or cavities. The laterally-oxidized VCSELs are able to operate in a single polarization mode throughout the entire light output power versus intensity curve. Combining the use of misoriented substrates with a device design that has an asymmetric aperture that reinforces the polarization mode favored by the substrate further improves polarization selectivity. Other device designs, however, can also be combined with substrate misorientation to strengthen polarization selectivity.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: October 16, 2001
    Assignee: Xerox Corporation
    Inventors: Christopher L. Chua, Robert L. Thornton, David W. Treat
  • Patent number: 6213789
    Abstract: A method and apparatus for interconnecting at least two devices. Each of the interconnected devices includes a contact structure for electrically and/or physically interconnecting the devices. Preferably, the contact structure for at least one of the devices includes a spring contact. An adhesive, such as a UV-curable adhesive, is applied to at least a portion of one of the devices, and once the adhesive is applied, the devices are assembled, i.e., brought into sufficient proximity so that the contact structures interconnect the devices. The adhesive can be applied directly to contact structures of one of the devices and/or can be applied to other portions of the devices so that the adhesive flows around the contact structures during assembly. The adhesive is then cured to bond the devices together.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: April 10, 2001
    Assignee: Xerox Corporation
    Inventors: Christopher L. Chua, David K. Fork, Patrick G. Kim, Linda Romano
  • Patent number: 6107641
    Abstract: An improved thin film transistor structure is provided having no source/gate or drain/gate overlap. A laser doping technique is applied to fabricate such transistors. Eliminating source/gate and drain/gate overlap significantly reduces or eliminates parasitic capacitance and feed-through voltage between source and gate. Short-channel a-Si:H thin film transistors may be obtained having high field effect mobilities. Improved pixel performance and pixel-to-pixel uniformity is provided.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: August 22, 2000
    Assignee: Xerox Corporation
    Inventors: Ping Mei, Rene A. Lujan, James B. Boyce, Christopher L. Chua, Michael G. Hack
  • Patent number: 6054335
    Abstract: A III-V compound light emitter is integrated with Si-based actuators. The Proposed devices take advantage of the superior optical properties of III-V compounds and the superior mechanical properties of Si, as well as mature fabrication technologies of Si-Micro-Electro-Mechanical Systems (MEMS). The emitter can be a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL) or an edge emitting laser. Electro or magnetic based actuation from Si-based actuators provides linear or angular movement of the light emitter.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: April 25, 2000
    Assignee: Xerox Corporation
    Inventors: Decai Sun, Ross D. Bringans, Christopher L. Chua, Philip D. Floyd, Eric Peeters, Joel A. Kubby, Alex T. Tran
  • Patent number: 6020223
    Abstract: A method of producing an improved thin film transistor structure is provided having no source/gate or drain/gate overlap. A laser-assisted doping technique is applied to fabricate such transistors. A radiation filter is employed, which is transparent to light at the photolithography wavelength, but reflective or opaque at the laser wavelength. Eliminating source/gate and drain/gate overlap significantly reduces or eliminates parasitic capacitance and feed-through voltage between source and gate. Short-channel a-Si:H thin film transistors may be obtained having high field effect mobilities. Improved pixel performance and pixel-to-pixel uniformity is provided.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: February 1, 2000
    Assignee: Xerox Corporation
    Inventors: Ping Mei, Rene A. Lujan, James B. Boyce, Christopher L. Chua, Michael G. Hack
  • Patent number: 6019796
    Abstract: A method of producing an improved thin film transistor structure is provided having no source/gate or drain/gate overlap. A laser-assisted doping technique is applied to fabricate such transistors. A radiation filter is employed, which is transparent to light at the photolithography wavelength, but reflective or opaque at the laser wavelength. Eliminating source/gate and drain/gate overlap significantly reduces or eliminates parasitic capacitance and feed-through voltage between source and gate. Short-channel a-Si:H thin film transistors may be obtained having high field effect mobilities. Improved pixel performance and pixel-to-pixel uniformity is provided.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: February 1, 2000
    Assignee: Xerox Corporation
    Inventors: Ping Mei, Rene A. Lujan, James B. Boyce, Christopher L. Chua, Michael G. Hack
  • Patent number: 5944537
    Abstract: A photolithographically patterned spring contact is formed on a substrate and electrically connects contact pads on two devices. The spring contact also compensates for thermal and mechanical variations and other environmental factors. An inherent stress gradient in the spring contact causes a free portion of the spring contact to bend up and away from the substrate. An anchor portion remains fixed to the substrate and is electrically connected to a first contact pad on the substrate. The spring contact is made of an elastic material and the free portion compliantly contacts a second contact pad, thereby electrically interconnecting the two contact pads.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: August 31, 1999
    Assignee: Xerox Corporation
    Inventors: Donald L. Smith, Robert L. Thornton, Christopher L. Chua, David K. Fork