Patents by Inventor Christopher Michael Jones

Christopher Michael Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11118451
    Abstract: A system to determine a contamination level of a formation fluid, the system including a formation tester tool to be positioned in a borehole, wherein the borehole has a mixture of the formation fluid and a drilling fluid and the formation tester tool includes a sensor to detect time series measurements from a plurality of sensor channels. The system includes a processor to dimensionally reduce the time series measurements to generate a set of reduced measurement scores in a multi-dimensional measurement space and determine an end member in the multi-dimensional measurement space based on the set of reduced measurement scores, wherein the end member comprises a position in the multi-dimensional measurement space that corresponds with a predetermined fluid concentration. The processor also determines the contamination level of the formation fluid at a time point based the set of reduced measurement scores and the end member.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 14, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Dingding Chen, Christopher Michael Jones
  • Patent number: 11092006
    Abstract: An apparatus includes a subsurface sensor in a borehole to provide a measurement series, a first processor, and a machine-readable medium having program code. The program code causes the apparatus to obtain the measurement series and generate a combination of functions based on the measurement series, wherein the combination of functions includes a subset of functions from a basis function library. The system also generate a set of values and communicates the set of values to a second processor, wherein the set of values includes a function identifier and corresponding function weight. The second processor is to generate a set of reconstructed measurement series based on the set of values and determine at least one of a formation property, a fluid property, and a well status based on the set of reconstructed measurement series.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 17, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Bin Dai
  • Publication number: 20210246785
    Abstract: A downhole tool comprises at least one inlet and a first pump coupled to the at least one inlet via a first flow line. The first pump is to pump at a first pump rate to extract fluid via the at least one inlet from a subsurface formation in which a borehole is created and in which the downhole tool is to be positioned. A sample chamber is coupled to the inlet via a second flow line, and a second pump is coupled to the inlet via the second flow line. The second pump is to pump at a second pump rate to extract the fluid via the at least one inlet from the subsurface formation and for storage in the sample chamber. The first pump rate is greater than the second pump rate.
    Type: Application
    Filed: December 11, 2020
    Publication date: August 12, 2021
    Inventors: Christopher Michael Jones, Anthony Herman van Zuilekom, Darren George Gascooke
  • Publication number: 20210247303
    Abstract: An optical element may be fabricated by applying foreign or attenuating material, for example, a copper material or a material that includes copper, to a silicon dioxide thin film to form a layer that exhibits extraordinary optical absorption in the infrared wavelength region of at or about 2500-4700 nanometers. The foreign material may comprise or include a transition metal. The optical element exhibits increased accuracy and sensitivity in the infrared wavelength region of at or about 2500-4700 nanometers. The at or about 2500-4700 nanometers absorption property of the optical element can be selectively tuned to any region within this at or about 2500-4700 nanometers wavelength region. The optical element may comprise multiple layers of varying thicknesses to further tune the optical element to one or more spectral bands. Such an optical element may be utilized in a formation fluid analysis tool or an eye protection device.
    Type: Application
    Filed: July 18, 2018
    Publication date: August 12, 2021
    Inventors: Jian Li, Jimmy Price, Bin Dai, Christopher Michael Jones
  • Patent number: 11085294
    Abstract: A method and system for measuring drilling fluid filtrate. The method may comprise disposing a downhole fluid sampling tool into a wellbore at a first location, activating a pump to draw a solids-containing fluid disposed in the wellbore into the downhole fluid sampling tool, drawing the drilling fluid with the pump across the at least one filter to form a drilling fluid filtrate, drawing the drilling fluid filtrate with the pump through the channel to the at least one sensor section, and measuring the drilling fluid filtrate with the at least one sensor. A system may comprise a downhole fluid sampling tool. The downhole fluid sampling tool may comprise at least one multi-chamber section, at least one sensor section, at least one filter, a pump, and a channel.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: August 10, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Christopher Michael Jones, Michael Thomas Pelletier, Darren George Gascooke
  • Publication number: 20210238941
    Abstract: A downhole tool for performing an acid stimulation operation includes a chamber and at least one acid resistant container to store a stimulation fluid comprising a stimulation acid. The at least one acid resistant container can be placed in the chamber prior to conveying the downhole tool in a borehole. The downhole tool can include a fluid injector fluidly coupled to an output of the chamber. After the downhole tool is positioned at a location in the borehole where the stimulation fluid is to be injected into a subsurface formation surrounding the borehole, the at least one acid-container can be opened such that the stimulation fluid can flow from the output of the chamber to the fluid injector. The fluid injector can inject the stimulation fluid into the subsurface formation.
    Type: Application
    Filed: December 4, 2020
    Publication date: August 5, 2021
    Inventors: Anthony Herman van Zuilekom, Christopher Michael Jones, Darren George Gascooke
  • Publication number: 20210239000
    Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore, performing a pressure test operation within the wellbore, performing a pumpout operation within the wellbore, identifying when a clean fluid sample may be taken by the downhole fluid sampling tool from at least the pressure test operation and the pumpout operation, and acquiring the clean fluid sample from the wellbore. A system may comprise a downhole fluid sampling tool and an information handling machine. The downhole fluid sampling tool may further comprise one or more probes attached to the downhole fluid sampling tool, one or more stabilizers attached to the downhole fluid sampling tool, and a sensor placed in the downhole fluid sampling tool configured to measure drilling fluid filtrate.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
  • Publication number: 20210238974
    Abstract: A method for performing an acid stimulation operation using a downhole tool includes conveying the downhole tool in a borehole that is formed in a subsurface formation. The downhole tool includes a chamber to store stimulation fluid comprising a stimulation acid. The downhole tool includes a fluid injector that is fluidly coupled to an output of the chamber via a flow line of the downhole tool. The method includes coating the flow line with an acid resistant fluid. The method includes injecting, from the fluid injector via the flow line, the stimulation fluid into the subsurface formation that is released through the output of the chamber.
    Type: Application
    Filed: December 4, 2020
    Publication date: August 5, 2021
    Inventors: Anthony Herman van Zuilekom, Christopher Michael Jones, Darren George Gascooke
  • Publication number: 20210231001
    Abstract: A method and system for performing a pressure test. The method may comprise inserting a formation testing tool into a wellbore to a first location within the wellbore, identifying one or more tool parameters of the formation testing tool, performing a first pre-test with the pressure transducer when the pressure has stabilized to identify formation parameters, inputting the formation parameters and the one or more tool parameters into a forward model, changing the one or more tool parameters to a second set of tool parameters; performing a second pre-test with the second set of tool parameters; and comparing the first pre-test to the second pre-test. A system may comprise at least one probe, a pump disposed within the formation testing tool, at least one stabilizer, a pressure transducer disposed at least partially in the at least one fluid passageway, and an information handling system.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 29, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
  • Publication number: 20210231012
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 29, 2021
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, III, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Patent number: 11073012
    Abstract: A method including, without removing a BHA from a wellbore of a well extending into a formation, extending, into an interior flow bore of the BHA, a first component of a wet latch assembly to provide an extended first component of the wet latch assembly, conveying downhole via a wireline cable, from a surface through an interior flow bore provided by a drill string, a second component of the wet latch assembly, and coupling the second component of the wet latch assembly with the extended first component of the wet latch assembly such that an electrical connection is established between the first component and the second component and between the BHA and the surface via the wireline cable, and testing the formation with a formation tester of the BHA, while providing power and/or data telemetry for the formation tester via the wet latch assembly and the wireline cable.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 27, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Glenn Andrew Wilson
  • Patent number: 11073016
    Abstract: A bottom hole assembly (BHA) comprising: a first component of a wet latch assembly, the first component configured for coupling, when extended into the interior flow bore of the BHA, with a second component of the wet latch assembly to provide an assembled wet latch assembly, such that an electrical connection can be made between the first component and the second component; and a formation tester operable for performing a formation test, the formation tester electrically connected with the first component of the wet latch assembly, such that power and/or telemetry can be provided to the formation tester via the assembled wet latch assembly during the formation test.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 27, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Glenn Andrew Wilson
  • Patent number: 11066740
    Abstract: A system includes a computational system to receive a design of an integrated computational element (ICE) including specification of substrate and layers. Additionally, the system includes a deposition source to provide a deposition plume having a plume spatial profile, and a support having a cylindrical surface. The cylindrical surface of the support is spaced apart from the deposition source and has a shape that corresponds to the plume spatial profile in a particular cross-section orthogonal to a longitudinal axis of the cylindrical surface of the support, such that, when the substrate support, with the supported instances of the substrate distributed over the cylindrical surface of the substrate support, is translated relative to the deposition plume along the longitudinal axis of the cylindrical surface of the substrate support, thicknesses of instances of each of the deposited layers are substantially uniform across the plurality of instances of the ICE.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: July 20, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David L. Perkins, Robert Paul Freese, Christopher Michael Jones, Richard Neal Gardner
  • Publication number: 20210215033
    Abstract: A method and system for performing a pressure test. The method may include inserting a formation testing tool into a wellbore to a first location within the wellbore based at least in part on a figure of merit. The formation testing tool may include at least one probe, a pump disposed within the formation testing tool and connect to the at least one probe by at least one probe channel and at least one fluid passageway, and at least one stabilizer disposed on the formation testing tool. The method may further include activating the at least one stabilizer, wherein the at least one stabilizer is activated into a surface of the wellbore and performing the pressure test and determining at least one formation property from the pressure test.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 15, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
  • Publication number: 20210209262
    Abstract: A method for designing a tool string for use in a wellbore includes receiving a merit function, and determining, with a computing system and based on the merit function, a tool string design for a tool string. The merit function comprises one or more defined objectives for performing a process in a wellbore. The tool string design comprises an indication of one or more tools used to form a tool string for performing the process in the wellbore, and the tool string design satisfies the merit function.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Jian LI, Bin DAI, Christopher Michael JONES, James M. PRICE, Cameron M. REKULLY
  • Publication number: 20210207478
    Abstract: Downhole tool is provided that includes a body, an intake port for receiving fluid from external the body, a pump, a filtration device, and an exit port. The pump is in fluid communication with the intake port for withdrawing fluid through the intake port. The filtration device has a particulate removing filter, and a flow line extending from the intake port to the filtration device. The filtration device is contained within the body and is in fluid communication with the intake port. The exit port is in fluid communication with the filtration device for ejecting the fluid to external the body.
    Type: Application
    Filed: December 28, 2016
    Publication date: July 8, 2021
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Michael T. PELLETIER, Christopher Michael JONES, Darren GASCOOKE, David L. PERKINS
  • Patent number: 11047712
    Abstract: Technologies for propagating optical information through an optical waveguide in a downhole environment are provided. An example method can include generating a light signal via a light-emitting device at a first location on a wellbore environment; propagating the light signal through an optical waveguide on an inner surface of a wellbore tool, the optical waveguide including a first layer of low refractive-index material, a second layer of high refractive-index material applied to a first surface of the first layer, and a third layer of low refractive-index material applied to a second surface of the second layer; and receiving, by a detector at a second location on the wellbore environment, the light signal via the optical waveguide on the inner surface of the wellbore tool.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: June 29, 2021
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Christopher Michael Jones, Michel Joseph LeBlanc, James M. Price, Jian Li, Darren Gascooke
  • Patent number: 11041358
    Abstract: Oilfield tools having a metal-to-metal seal formed between a first metal surface and a second metal surface, wherein at least one of the first and second metal surfaces are at least partially coated by chemical bonding or physical deposition of a coating material that is more durable and has a lower coefficient of friction than either or both of the first and/or second metal surfaces to which the coating material is applied.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 22, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren Gascooke, James M. Price, Michael T. Pelletier
  • Publication number: 20210181028
    Abstract: Methods and systems for implementing and utilizing radiometric characterization in combination with reference material characterization of an optical sensor to more accurately and efficiently measure material properties are disclosed. In some embodiments, a method for for optically measuring material properties includes an optical sensor being radiometrically characterized based on measured optical responses. A model is generated and includes model components of the optical sensor. A parameterized model is generated by fitting n variable parameters of the model components using the optical responses. The optical sensor is utilized to measure an optical response to a reference material and a re-parameterized model is generated by re-fitting m of the n variable parameters of the model components based, at least in part, on the measured optical response to the reference material, wherein m is less than n.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 17, 2021
    Inventors: Jian Li, Christopher Michael Jones, James Martin Price, Bin Dai
  • Publication number: 20210164908
    Abstract: The present application relates sensing reactive components in fluids by monitoring band gap changes to a material having interacted with the reactive components via physisorption and/or chemisorption. In some embodiments, the sensors of the present disclosure include the material as a reactive surface on a substrate. The band gap changes may be detected by measuring conductance changes and/or spectroscopic changes. In some instances, the sensing may occur downhole during one or more wellbore operations like drilling, hydraulic fracturing, and producing hydrocarbons.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Michael T. Pelletier, David L. Perkins, Christopher Michael Jones