Patents by Inventor Christopher Michael Jones

Christopher Michael Jones has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210356333
    Abstract: A thermal sensor module, comprising: a housing, wherein the housing comprises a first end and a second end, wherein the housing is hollow and configured to allow a fluid to flow into the housing through the first end and exit through the second end; a heat source, wherein the heat source is disposed at a central axis of the housing and traverses at least partially through the housing; and a temperature sensor, wherein the temperature sensor is positioned in the housing to measure temperature of the fluid flowing in the housing.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 18, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Michel Joseph LeBlanc, Christopher Michael Jones, Michael Thomas Pelletier, Peter Olapade
  • Publication number: 20210355819
    Abstract: Encoding downhole data in nucleic acid molecules provides increased speed accuracy in the communication of downhole data to the surface. Nucleic acid molecules can be coded with downhole data using a telemetry module that comprises a microfluidic system to perform an encoding process that encodes carrier nucleic acid molecules with substitute sequences or segments at specific locations that comprise retrieved or acquired downhole data. The encoded carrier nucleic acid molecules are injected into a downhole fluid that is circulated to the surface. Once the encoded carrier nucleic acid molecules reach the surface, the information can be decoded and analyzed. Each carrier nucleic acid molecule may be preconfigured with a header. The header may comprise information that allows N for ease in coding and recombining downhole data.
    Type: Application
    Filed: November 19, 2018
    Publication date: November 18, 2021
    Inventors: Christopher Michael Jones, Etienne Marcel Samson, Bin Dai
  • Publication number: 20210340865
    Abstract: An apparatus comprises a subsurface sensor to be positioned in a wellbore formed in a subsurface formation, wherein the subsurface sensor is to detect subsurface measurements. The apparatus includes a processor and a machine-readable medium having program code executable by the processor to cause the processor to generate a combination of functions based on the subsurface measurements, wherein the combination of functions is a subset of functions from a library of functions. The program code is executable by the processor to cause the processor to determine at least one function parameter of at least one function of the combination of functions and determine at least one formation property of the subsurface formation based on the at least one function parameter.
    Type: Application
    Filed: July 2, 2021
    Publication date: November 4, 2021
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman van Zuilekom, Bin Dai
  • Publication number: 20210332700
    Abstract: The disclosed embodiments include downhole sample extractors and downhole sample extraction systems. In some embodiments, the downhole sample extractor includes a sample container chamber that holds a sample container containing a downhole sample. The downhole sample extractor also includes a sample extraction chamber having an internal chamber that is partially filled with a carrier solution, wherein the downhole sample is mixed with the carrier solution in the internal chamber of the extraction container. The downhole sample extractor further includes a first piston that, when actuated, inserts the sample container into the internal chamber of the sample extraction chamber.
    Type: Application
    Filed: November 28, 2018
    Publication date: October 28, 2021
    Inventors: Michael T. PELLETIER, Darren GASCOOKE, Christopher Michael JONES
  • Publication number: 20210332699
    Abstract: A method and system for measuring drilling fluid filtrate. The method may comprise disposing a downhole fluid sampling tool into a wellbore at a first location, activating a pump to draw a solids-containing fluid disposed in the wellbore into the downhole fluid sampling tool, drawing the drilling fluid with the pump across the at least one filter to form a drilling fluid filtrate, drawing the drilling fluid filtrate with the pump through the channel to the at least one sensor section, and measuring the drilling fluid filtrate with the at least one sensor. A system may comprise a downhole fluid sampling tool. The downhole fluid sampling tool may comprise at least one multi-chamber section, at least one sensor section, at least one filter, a pump, and a channel.
    Type: Application
    Filed: July 7, 2021
    Publication date: October 28, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Christopher Michael Jones, Michael Thomas Pelletier, Darren George Gascooke
  • Patent number: 11156741
    Abstract: Improved systematic inversion methodology applied to formation testing data interpretation with spherical, radial and/or cylindrical flow models is disclosed. A method of determining a parameter of a formation of interest at a desired location comprises directing a formation tester to the desired location in the formation of interest and obtaining data from the desired location in the formation of interest. The obtained data relates to a first parameter at the desired location of the formation of interest. The obtained data is regressed to determine a second parameter at the desired location of the formation of interest. Regressing the obtained data comprises using a method selected from a group consisting of a deterministic approach, a probabilistic approach, and an evolutionary approach.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 26, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Mark A. Proett, Li Gao, Christopher Michael Jones
  • Patent number: 11156083
    Abstract: Disclosed are methods and systems for determination of fluid contamination of a fluid sample from a downhole fluid sampling tool. A method may comprise obtaining a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid; obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition; obtaining initial values of iterative parameters, wherein the iterative parameters comprise fluid contamination of the fluid sample; determining calculated fluid properties of the reservoir fluid using equation of state flash calculating; and repeating steps of determining component mole fractions and determining calculated fluid properties for use in the mole fraction distribution function until a comparison of one or more of the calculated fluid properties with one or more of the input parameters is within a tolerance error.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 26, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Tian He, Mehdi Alipour Kallehbasti, Ming Gu, Christopher Michael Jones, Darren Gascooke, Michael T. Pelletier, Di Du
  • Publication number: 20210317738
    Abstract: A method including, without removing a BHA from a wellbore of a well extending into a formation, extending, into an interior flow bore of the BHA, a first component of a wet latch assembly to provide an extended first component of the wet latch assembly, conveying downhole via a wireline cable, from a surface through an interior flow bore provided by a drill string, a second component of the wet latch assembly, and coupling the second component of the wet latch assembly with the extended first component of the wet latch assembly such that an electrical connection is established between the first component and the second component and between the BHA and the surface via the wireline cable, and testing the formation with a formation tester of the BHA, while providing power and/or data telemetry for the formation tester via the wet latch assembly and the wireline cable.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Inventors: Christopher Michael JONES, Darren George GASCOOKE, Anthony Herman VAN ZUILEKOM, Glenn Andrew WILSON
  • Patent number: 11125083
    Abstract: A focused sampling method comprising: allocating fluid flow from a guard zone through a guard line and from a sample zone through a sample line, the guard zone being positioned at least partially concentrically about the sample zone and the guard zone, and the sample zone being in fluid communication with a formation; pumping, via a common line, a combined fluid flow from the formation through to a discard line for a pre-sampling time period, the combined flow comprising the fluid flow allocated from the guard zone into the guard line and the fluid flow allocated from the sample zone into the sample line; subsequent the pre-sampling time period, discontinuing flow from the guard line into the common line, such that the combined flow comprises only the fluid flow from the sample line; and introducing the combined flow comprising the fluid flow from the sample line into a sample chamber.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: September 21, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Marcelo Civarolo
  • Patent number: 11118451
    Abstract: A system to determine a contamination level of a formation fluid, the system including a formation tester tool to be positioned in a borehole, wherein the borehole has a mixture of the formation fluid and a drilling fluid and the formation tester tool includes a sensor to detect time series measurements from a plurality of sensor channels. The system includes a processor to dimensionally reduce the time series measurements to generate a set of reduced measurement scores in a multi-dimensional measurement space and determine an end member in the multi-dimensional measurement space based on the set of reduced measurement scores, wherein the end member comprises a position in the multi-dimensional measurement space that corresponds with a predetermined fluid concentration. The processor also determines the contamination level of the formation fluid at a time point based the set of reduced measurement scores and the end member.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 14, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Dingding Chen, Christopher Michael Jones
  • Patent number: 11092006
    Abstract: An apparatus includes a subsurface sensor in a borehole to provide a measurement series, a first processor, and a machine-readable medium having program code. The program code causes the apparatus to obtain the measurement series and generate a combination of functions based on the measurement series, wherein the combination of functions includes a subset of functions from a basis function library. The system also generate a set of values and communicates the set of values to a second processor, wherein the set of values includes a function identifier and corresponding function weight. The second processor is to generate a set of reconstructed measurement series based on the set of values and determine at least one of a formation property, a fluid property, and a well status based on the set of reconstructed measurement series.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 17, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Bin Dai
  • Publication number: 20210247303
    Abstract: An optical element may be fabricated by applying foreign or attenuating material, for example, a copper material or a material that includes copper, to a silicon dioxide thin film to form a layer that exhibits extraordinary optical absorption in the infrared wavelength region of at or about 2500-4700 nanometers. The foreign material may comprise or include a transition metal. The optical element exhibits increased accuracy and sensitivity in the infrared wavelength region of at or about 2500-4700 nanometers. The at or about 2500-4700 nanometers absorption property of the optical element can be selectively tuned to any region within this at or about 2500-4700 nanometers wavelength region. The optical element may comprise multiple layers of varying thicknesses to further tune the optical element to one or more spectral bands. Such an optical element may be utilized in a formation fluid analysis tool or an eye protection device.
    Type: Application
    Filed: July 18, 2018
    Publication date: August 12, 2021
    Inventors: Jian Li, Jimmy Price, Bin Dai, Christopher Michael Jones
  • Publication number: 20210246785
    Abstract: A downhole tool comprises at least one inlet and a first pump coupled to the at least one inlet via a first flow line. The first pump is to pump at a first pump rate to extract fluid via the at least one inlet from a subsurface formation in which a borehole is created and in which the downhole tool is to be positioned. A sample chamber is coupled to the inlet via a second flow line, and a second pump is coupled to the inlet via the second flow line. The second pump is to pump at a second pump rate to extract the fluid via the at least one inlet from the subsurface formation and for storage in the sample chamber. The first pump rate is greater than the second pump rate.
    Type: Application
    Filed: December 11, 2020
    Publication date: August 12, 2021
    Inventors: Christopher Michael Jones, Anthony Herman van Zuilekom, Darren George Gascooke
  • Patent number: 11085294
    Abstract: A method and system for measuring drilling fluid filtrate. The method may comprise disposing a downhole fluid sampling tool into a wellbore at a first location, activating a pump to draw a solids-containing fluid disposed in the wellbore into the downhole fluid sampling tool, drawing the drilling fluid with the pump across the at least one filter to form a drilling fluid filtrate, drawing the drilling fluid filtrate with the pump through the channel to the at least one sensor section, and measuring the drilling fluid filtrate with the at least one sensor. A system may comprise a downhole fluid sampling tool. The downhole fluid sampling tool may comprise at least one multi-chamber section, at least one sensor section, at least one filter, a pump, and a channel.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: August 10, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Bin Dai, Christopher Michael Jones, Michael Thomas Pelletier, Darren George Gascooke
  • Publication number: 20210238941
    Abstract: A downhole tool for performing an acid stimulation operation includes a chamber and at least one acid resistant container to store a stimulation fluid comprising a stimulation acid. The at least one acid resistant container can be placed in the chamber prior to conveying the downhole tool in a borehole. The downhole tool can include a fluid injector fluidly coupled to an output of the chamber. After the downhole tool is positioned at a location in the borehole where the stimulation fluid is to be injected into a subsurface formation surrounding the borehole, the at least one acid-container can be opened such that the stimulation fluid can flow from the output of the chamber to the fluid injector. The fluid injector can inject the stimulation fluid into the subsurface formation.
    Type: Application
    Filed: December 4, 2020
    Publication date: August 5, 2021
    Inventors: Anthony Herman van Zuilekom, Christopher Michael Jones, Darren George Gascooke
  • Publication number: 20210238974
    Abstract: A method for performing an acid stimulation operation using a downhole tool includes conveying the downhole tool in a borehole that is formed in a subsurface formation. The downhole tool includes a chamber to store stimulation fluid comprising a stimulation acid. The downhole tool includes a fluid injector that is fluidly coupled to an output of the chamber via a flow line of the downhole tool. The method includes coating the flow line with an acid resistant fluid. The method includes injecting, from the fluid injector via the flow line, the stimulation fluid into the subsurface formation that is released through the output of the chamber.
    Type: Application
    Filed: December 4, 2020
    Publication date: August 5, 2021
    Inventors: Anthony Herman van Zuilekom, Christopher Michael Jones, Darren George Gascooke
  • Publication number: 20210239000
    Abstract: A method may comprise positioning a downhole fluid sampling tool into a wellbore, performing a pressure test operation within the wellbore, performing a pumpout operation within the wellbore, identifying when a clean fluid sample may be taken by the downhole fluid sampling tool from at least the pressure test operation and the pumpout operation, and acquiring the clean fluid sample from the wellbore. A system may comprise a downhole fluid sampling tool and an information handling machine. The downhole fluid sampling tool may further comprise one or more probes attached to the downhole fluid sampling tool, one or more stabilizers attached to the downhole fluid sampling tool, and a sensor placed in the downhole fluid sampling tool configured to measure drilling fluid filtrate.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Peter Ojo Olapade, Bin Dai, Christopher Michael Jones, James Martin Price, Dingding Chen, Anthony Herman Van Zuilekom
  • Publication number: 20210231012
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 29, 2021
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, III, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Publication number: 20210231001
    Abstract: A method and system for performing a pressure test. The method may comprise inserting a formation testing tool into a wellbore to a first location within the wellbore, identifying one or more tool parameters of the formation testing tool, performing a first pre-test with the pressure transducer when the pressure has stabilized to identify formation parameters, inputting the formation parameters and the one or more tool parameters into a forward model, changing the one or more tool parameters to a second set of tool parameters; performing a second pre-test with the second set of tool parameters; and comparing the first pre-test to the second pre-test. A system may comprise at least one probe, a pump disposed within the formation testing tool, at least one stabilizer, a pressure transducer disposed at least partially in the at least one fluid passageway, and an information handling system.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 29, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Bin Dai, James M. Price, Anthony Herman Van Zuilekom, Darren George Gascooke
  • Patent number: 11073012
    Abstract: A method including, without removing a BHA from a wellbore of a well extending into a formation, extending, into an interior flow bore of the BHA, a first component of a wet latch assembly to provide an extended first component of the wet latch assembly, conveying downhole via a wireline cable, from a surface through an interior flow bore provided by a drill string, a second component of the wet latch assembly, and coupling the second component of the wet latch assembly with the extended first component of the wet latch assembly such that an electrical connection is established between the first component and the second component and between the BHA and the surface via the wireline cable, and testing the formation with a formation tester of the BHA, while providing power and/or data telemetry for the formation tester via the wet latch assembly and the wireline cable.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 27, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Glenn Andrew Wilson