Patents by Inventor Christopher N. Brindle

Christopher N. Brindle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967948
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: April 23, 2024
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20240128968
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Application
    Filed: June 2, 2023
    Publication date: April 18, 2024
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Patent number: 11901459
    Abstract: A method and apparatus are disclosed for use in improving gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit includes a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 13, 2024
    Assignee: pSemi Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae-Youn Kim
  • Publication number: 20240007098
    Abstract: A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch includes switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. The charge injection control elements include resistors or transistors. A method for controlling charge injection in a switch circuit is disclosed whereby injected charge is generated at resistively-isolated nodes between series coupled switching transistors, and the injected charge is conveyed to at least one node of the switch circuit that is not resistively-isolated.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 4, 2024
    Inventors: Alexander Dribinsky, Tae Youn Kim, Dylan J. Kelly, Christopher N. Brindle
  • Patent number: 11695407
    Abstract: A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch comprises a plurality of switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. In one embodiment, the charge injection control elements comprise resistors. In another embodiment, the charge injection control elements comprise transistors.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: July 4, 2023
    Assignee: pSemi Corporation
    Inventors: Alexander Dribinsky, Tae Youn Kim, Dylan J. Kelly, Christopher N. Brindle
  • Patent number: 11671091
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: June 6, 2023
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Publication number: 20220311432
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FIT performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: 11362652
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: June 14, 2022
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20220181497
    Abstract: A method and apparatus are disclosed for use in improving gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit includes a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 9, 2022
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae-Youn Kim
  • Publication number: 20220173731
    Abstract: A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch comprises a plurality of switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. In one embodiment, the charge injection control elements comprise resistors. In another embodiment, the charge injection control elements comprise transistors.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 2, 2022
    Inventors: Alexander Dribinsky, Tae Youn Kim, Dylan J. Kelly, Christopher N. Brindle
  • Publication number: 20220021384
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Application
    Filed: July 28, 2021
    Publication date: January 20, 2022
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Patent number: 11201245
    Abstract: A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOD metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: December 14, 2021
    Assignee: pSemi Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae-Youn Kim
  • Patent number: 11196414
    Abstract: A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch comprises a plurality of switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. In one embodiment, the charge injection control elements comprise resistors. In another embodiment, the charge injection control elements comprise transistors.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: December 7, 2021
    Assignee: pSemi Corporation
    Inventors: Alexander Dribinsky, Tae Youn Kim, Dylan J. Kelly, Christopher N. Brindle
  • Publication number: 20210320206
    Abstract: A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
    Type: Application
    Filed: March 19, 2021
    Publication date: October 14, 2021
    Inventors: Christopher N. Brindle, Jie Deng, Alper Genc, Chieh-Kai Yang
  • Patent number: 11082040
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 3, 2021
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Publication number: 20210194478
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Application
    Filed: August 6, 2020
    Publication date: June 24, 2021
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George Imthurn, Robert B. Welstand, Mark L. Burgener
  • Publication number: 20210152170
    Abstract: A circuit and method for controlling charge injection in a circuit are disclosed. In one embodiment, the circuit and method are employed in a semiconductor-on-insulator (SOI) Radio Frequency (RF) switch. In one embodiment, an SOI RF switch comprises a plurality of switching transistors coupled in series, referred to as “stacked” transistors, and implemented as a monolithic integrated circuit on an SOI substrate. Charge injection control elements are coupled to receive injected charge from resistively-isolated nodes located between the switching transistors, and to convey the injected charge to at least one node that is not resistively-isolated. In one embodiment, the charge injection control elements comprise resistors. In another embodiment, the charge injection control elements comprise transistors.
    Type: Application
    Filed: July 6, 2020
    Publication date: May 20, 2021
    Inventors: Alexander Dribinsky, Tae Youn Kim, Dylan J. Kelly, Christopher N. Brindle
  • Patent number: 11011633
    Abstract: A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: May 18, 2021
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Jie Deng, Alper Genc, Chieh-Kai Yang
  • Patent number: RE48944
    Abstract: A method and apparatus for use in improving the linearity characteristics of MOSFET devices using an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one exemplary embodiment, a circuit having at least one SOI MOSFET is configured to operate in an accumulated charge regime. An accumulated charge sink, operatively coupled to the body of the SOI MOSFET, eliminates, removes or otherwise controls accumulated charge when the FET is operated in the accumulated charge regime, thereby reducing the nonlinearity of the parasitic off-state source-to-drain capacitance of the SOI MOSFET. In RF switch circuits implemented with the improved SOI MOSFET devices, harmonic and intermodulation distortion is reduced by removing or otherwise controlling the accumulated charge when the SOI MOSFET operates in an accumulated charge regime.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: February 22, 2022
    Assignee: pSemi Corporation
    Inventors: Christopher N. Brindle, Michael A. Stuber, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener
  • Patent number: RE48965
    Abstract: A method and apparatus are disclosed for use in improving the gate oxide reliability of semiconductor-on-insulator (SOI) metal-oxide-silicon field effect transistor (MOSFET) devices using accumulated charge control (ACC) techniques. The method and apparatus are adapted to remove, reduce, or otherwise control accumulated charge in SOI MOSFETs, thereby yielding improvements in FET performance characteristics. In one embodiment, a circuit comprises a MOSFET, operating in an accumulated charge regime, and means for controlling the accumulated charge, operatively coupled to the SOI MOSFET. A first determination is made of the effects of an uncontrolled accumulated charge on time dependent dielectric breakdown (TDDB) of the gate oxide of the SOI MOSFET. A second determination is made of the effects of a controlled accumulated charge on TDDB of the gate oxide of the SOI MOSFET.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: March 8, 2022
    Assignee: pSemi Corporation
    Inventors: Michael A. Stuber, Christopher N. Brindle, Dylan J. Kelly, Clint L. Kemerling, George P. Imthurn, Robert B. Welstand, Mark L. Burgener, Alexander Dribinsky, Tae Youn Kim