Patents by Inventor Christopher R. Hauf

Christopher R. Hauf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945219
    Abstract: In a printing method, at least one image of a substrate supported in a printing system is acquired. An actual position of a first alignment feature on the substrate in a frame of reference of the printing system is determined based on the at least one image. Expected positions of second alignment features on the substrate are determined based on the actual position of the first alignment feature. Actual positions of the second alignment features in the frame of reference of the printing system are determined based on the at least one image and the expected positions of the second alignment features. Target positions of print regions on the substrate are determined based on the actual positions of the second alignment features. Ejection of print material onto the substrate in the print regions is controlled based on the target positions of the print regions.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 2, 2024
    Assignee: Kateeva, Inc.
    Inventors: Christopher R. Hauf, Eli Vronsky, Alexander Sou-Kang Ko
  • Publication number: 20230391105
    Abstract: A printing system includes a substrate support, a printhead assembly positioned facing the substrate support, and an imager. The printhead assembly includes a plurality of dispensing nozzles extending in an ejection direction towards the substrate support and a plurality of marks. The imager is movable relative to the printhead assembly and oriented in a direction opposite to the ejection direction for capturing at least one image including the plurality of marks indicating positions of the plurality of dispensing nozzles in the printhead assembly.
    Type: Application
    Filed: August 11, 2023
    Publication date: December 7, 2023
    Applicant: Kateeva, Inc.
    Inventors: Christopher R. Hauf, David Darrow, David Donovan
  • Patent number: 11801687
    Abstract: A printing system includes a substrate support, a printhead assembly positioned facing the substrate support, and an imager. The printhead assembly includes a plurality of dispensing nozzles extending in an ejection direction towards the substrate support and a plurality of marks. The imager is movable relative to the printhead assembly and oriented in a direction opposite to the ejection direction for capturing at least one image including the plurality of marks indicating positions of the plurality of dispensing nozzles in the printhead assembly.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: October 31, 2023
    Assignee: Kateeva, Inc.
    Inventors: Christopher R. Hauf, David Darrow, David Donovan
  • Publication number: 20230320184
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: May 8, 2023
    Publication date: October 5, 2023
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20230202163
    Abstract: In a printing method, at least one image of a substrate supported in a printing system is acquired. An actual position of a first alignment feature on the substrate in a frame of reference of the printing system is determined based on the at least one image. Expected positions of second alignment features on the substrate are determined based on the actual position of the first alignment feature. Actual positions of the second alignment features in the frame of reference of the printing system are determined based on the at least one image and the expected positions of the second alignment features. Target positions of print regions on the substrate are determined based on the actual positions of the second alignment features. Ejection of print material onto the substrate in the print regions is controlled based on the target positions of the print regions.
    Type: Application
    Filed: March 7, 2023
    Publication date: June 29, 2023
    Applicant: Kateeva, Inc.
    Inventors: Christopher R. Hauf, Eli Vronsky, Alexander Sou-Kang Ko
  • Patent number: 11678561
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: June 13, 2023
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 11628666
    Abstract: In a printing method, at least one image of a substrate supported in a printing system is acquired. An actual position of a first alignment feature on the substrate in a frame of reference of the printing system is determined based on the at least one image. Expected positions of second alignment features on the substrate are determined based on the actual position of the first alignment feature. Actual positions of the second alignment features in the frame of reference of the printing system are determined based on the at least one image and the expected positions of the second alignment features. Target positions of print regions on the substrate are determined based on the actual positions of the second alignment features. Ejection of print material onto the substrate in the print regions is controlled based on the target positions of the print regions.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: April 18, 2023
    Assignee: Kateeva, Inc.
    Inventors: Christopher R. Hauf, Eli Vronsky, Alexander Sou-Kang Ko
  • Patent number: 11489146
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: November 1, 2022
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Publication number: 20220140296
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20220063293
    Abstract: Improved manufacturing using a printer that deposits a liquid to fabricate a layer having specified thickness includes automated adjustment or print parameters based on ink or substrate characteristics which have been specifically measured or estimated. In one embodiment, ink spreading characteristics are used to select droplet size used to produce a particular layer, and/or to select a specific baseline volume/area or droplet density that is then scaled and/or adjusted to provide for layer homogeneity. In a second embodiment, expected per-droplet particulars are used to interleave droplets in order to carefully control melding of deposited droplets, and so assist with layer homogeneity. The liquid layer is then cured or baked to provide for a permanent structure.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: Kateeva, Inc.
    Inventors: Conor F. Madigan, Christopher R. Hauf
  • Publication number: 20220063264
    Abstract: Methods of controlling an inkjet printer are disclosed. The methods include defining shape information using a design graphics system. The shape information includes fill colors for shapes, and may include colors for edges. The colors are interpreted as one or more attributes, such as film thickness or material, for a film to be formed on a substrate.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Christopher R. Hauf, Alexander Sou-Kang KO, Anson Vandoren
  • Patent number: 11233226
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: January 25, 2022
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20210394528
    Abstract: A printing system includes a substrate support, a printhead assembly positioned facing the substrate support, and an imager. The printhead assembly includes a plurality of dispensing nozzles extending in an ejection direction towards the substrate support and a plurality of marks. The imager is movable relative to the printhead assembly and oriented in a direction opposite to the ejection direction for capturing at least one image including the plurality of marks indicating positions of the plurality of dispensing nozzles in the printhead assembly.
    Type: Application
    Filed: September 1, 2021
    Publication date: December 23, 2021
    Applicant: Kateeva, Inc.
    Inventors: Christopher R. Hauf, David Darrow, David Donovan
  • Patent number: 11203207
    Abstract: Improved manufacturing using a printer that deposits a liquid to fabricate a layer having specified thickness includes automated adjustment or print parameters based on ink or substrate characteristics which have been specifically measured or estimated. In one embodiment, ink spreading characteristics are used to select droplet size used to produce a particular layer, and/or to select a specific baseline volume/area or droplet density that is then scaled and/or adjusted to provide for layer homogeneity. In a second embodiment, expected per-droplet particulars are used to interleave droplets in order to carefully control melding of deposited droplets, and so assist with layer homogeneity. The liquid layer is then cured or baked to provide for a permanent structure.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: December 21, 2021
    Assignee: KATEEVA, INC.
    Inventors: Conor F. Madigan, Christopher R. Hauf
  • Publication number: 20210379888
    Abstract: In a printing method, at least one image of a substrate supported in a printing system is acquired. An actual position of a first alignment feature on the substrate in a frame of reference of the printing system is determined based on the at least one image. Expected positions of second alignment features on the substrate are determined based on the actual position of the first alignment feature. Actual positions of the second alignment features in the frame of reference of the printing system are determined based on the at least one image and the expected positions of the second alignment features. Target positions of print regions on the substrate are determined based on the actual positions of the second alignment features. Ejection of print material onto the substrate in the print regions is controlled based on the target positions of the print regions.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Applicant: Kateeva, Inc.
    Inventors: Christopher R. HAUF, Eli VRONSKY, Alexander Sou-Kang KO
  • Patent number: 11135854
    Abstract: A printing system includes a substrate support, a printhead assembly positioned facing the substrate support, and an imager. The printhead assembly includes a plurality of dispensing nozzles extending in an ejection direction towards the substrate support and a plurality of marks. The imager is movable relative to the printhead assembly and oriented in a direction opposite to the ejection direction for capturing at least one image including the plurality of marks indicating positions of the plurality of dispensing nozzles in the printhead assembly.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: October 5, 2021
    Assignee: Kateeva, Inc.
    Inventors: Christopher R. Hauf, David Darrow, David Donovan
  • Patent number: 11135835
    Abstract: In a printing method, at least one image of a substrate supported in a printing system is acquired. An actual position of a first alignment feature on the substrate in a frame of reference of the printing system is determined based on the at least one image. Expected positions of second alignment features on the substrate are determined based on the actual position of the first alignment feature. Actual positions of the second alignment features in the frame of reference of the printing system are determined based on the at least one image and the expected positions of the second alignment features. Target positions of print regions on the substrate are determined based on the actual positions of the second alignment features. Ejection of print material onto the substrate in the print regions is controlled based on the target positions of the print regions.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: October 5, 2021
    Assignee: Kateeva, Inc.
    Inventors: Christopher R. Hauf, Eli Vronsky, Alexander Sou-Kang Ko
  • Publication number: 20210167339
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Patent number: 10950826
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: March 16, 2021
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Publication number: 20200381675
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 3, 2020
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan