Patents by Inventor Christopher R. Hauf

Christopher R. Hauf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160133881
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 12, 2016
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 9224952
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: December 29, 2015
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20150221869
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: April 7, 2015
    Publication date: August 6, 2015
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 9010899
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: April 21, 2015
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20150099059
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Application
    Filed: July 24, 2014
    Publication date: April 9, 2015
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Publication number: 20140184683
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 3, 2014
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 8085435
    Abstract: A method for selecting the level of color inconstancy of an output image produced on a digital color printer having a neutral ink and a plurality of color inks is disclosed. The method includes analyzing the distribution of input colors present in the input digital image to determine a color distribution metric related to the importance of producing output images having a reduced color inconstancy when the output image is viewed under a variety of image illumination spectra; selecting a color transform from a set of available color transforms designed to produce output images having different color inconstancy characteristics in response to the color distribution metric; processing the input digital image using the selected color transform to produce a transformed image having a selected level of color inconstancy; and printing the transformed image on the digital color printer to produce an output image having the selected level of color inconstancy.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 27, 2011
    Assignee: Eastman Kodak Company
    Inventors: Christopher R. Hauf, Kevin E. Spaulding, Douglas W. Couwenhoven
  • Publication number: 20100103438
    Abstract: A method for selecting the level of color inconstancy of an output image produced on a digital color printer having a neutral ink and a plurality of color inks is disclosed. The method includes analyzing the distribution of input colors present in the input digital image to determine a color distribution metric related to the importance of producing output images having a reduced color inconstancy when the output image is viewed under a variety of image illumination spectra; selecting a color transform from a set of available color transforms designed to produce output images having different color inconstancy characteristics in response to the color distribution metric; processing the input digital image using the selected color transform to produce a transformed image having a selected level of color inconstancy; and printing the transformed image on the digital color printer to produce an output image having the selected level of color inconstancy.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: Christopher R. Hauf, Kevin E. Spaulding, Douglas W. Couwenhoven