Patents by Inventor Christopher Schell

Christopher Schell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070222006
    Abstract: A micromechanical component which includes a substrate; a first rigid electrode system situated on or in the substrate; a second electrode system suspended on the substrate; an intermediate space provided between the first electrode system and the second electrode system; the second electrode system being mounted on the suspension post in an elastically deflectable manner with respect to the first electrode system such that the capacitance of a capacitor formed by the first electrode system, the second electrode system, and the intermediate space may be modified.
    Type: Application
    Filed: January 30, 2007
    Publication date: September 27, 2007
    Inventors: Heribert Weber, Christoph Schelling
  • Publication number: 20070169558
    Abstract: A micromechanical device and a method for producing this device are provided, two sensor patterns being provided in the semiconductor material to record two mechanical variables, in particular the pressure and the acceleration. The functionality of both sensor patterns is based on the same predefined converter principle.
    Type: Application
    Filed: July 13, 2006
    Publication date: July 26, 2007
    Inventors: Hubert Benzel, Christoph Schelling
  • Publication number: 20070126069
    Abstract: A micromechanical device and a method for producing this device are provided, the device having a sensor pattern that includes a spring pattern and a seismic mass. The seismic mass may be connected to the substrate material via the spring pattern, and a clearance may be provided in a direction perpendicular to the major substrate plane between the spring pattern and the substrate material. Alternatively, the spring pattern and the seismic mass may have a common, essentially continuous, front side surface.
    Type: Application
    Filed: November 15, 2006
    Publication date: June 7, 2007
    Inventors: Joerg Muchow, Hubert Benzel, Markus Lang, Regina Grote, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Volkmar Senz
  • Publication number: 20070128755
    Abstract: In the manufacture of at least one passage in a silicon wafer, in a first method step, starting from a first side of the wafer, a first recess is produced in the wafer, and in a second method step, starting from a second side of the wafer, a second recess is produced in the wafer. The first recess and the second recess are produced such that together they form a passage between the first and second sides of the silicon wafer.
    Type: Application
    Filed: October 23, 2006
    Publication date: June 7, 2007
    Inventors: Matthias Fuertsch, Stefan Finkbeiner, Christoph Schelling, Stefan Weiss, Thomas Wagner, Christian Maeurer, Ines Breibach
  • Patent number: 7213465
    Abstract: A micromechanical sensor, and a method for manufacturing a micromechanical sensor, featuring, in addition to a sensor element, at least a part of an evaluation circuit. In this context, the micromechanical sensor contains at least a first structural element made of a first material. The first structural element houses at least one sensor region and a part of an evaluation circuit, at least one sensor element being located in the sensor region. Moreover, at least one first and one second side are to be distinguished from one another in the first structural element. The first side of the first structural element features at least the sensor element, while the second side of the first structural element features at least a part of the evaluation circuit. At least parts of the sensor region and/or of the evaluation circuit are formed from the first material by micromechanical processing.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: May 8, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Frank Schaefer, Christoph Schelling
  • Publication number: 20070062812
    Abstract: The invention relates to a gas sensor comprising a membrane layer (3) formed on a semiconductor substrate (2), an evaluation structure (7) being arranged on said substrate in an evaluation area (8) and a heating structure (9) outside the evaluation area (8), in addition to a gas-sensitive layer (10) arranged above the evaluation structure (7) and the heating structure (9), wherein said gas-sensitive layer (10) can be heated by the heating structure (9) and the electrical resistance of the gas-sensitive layer (10) can be evaluated by the evaluation structure (7). The heating structure (9) is arranged on an adhesion-promoting oxide layer (6) on the top surface of the membrane layer (3) and is separated from the gas-sensitive layer by a cover oxide layer (11).
    Type: Application
    Filed: July 23, 2004
    Publication date: March 22, 2007
    Inventors: Heribert Weber, Odd-Axel Pruetz, Christian Krummel, Christoph Schelling, Detlef Gruen
  • Patent number: 7148077
    Abstract: A micromechanical structural element, having a very stable diaphragm, implemented in a pure front process and in a layer construction on a substrate. The layer construction includes at least one sacrificial layer and one diaphragm layer above the sacrificial layer, which is structured for laying bare the diaphragm and generating stabilizing elements on the diaphragm, at least one recess being generated for a stabilizing element of the diaphragm. The structure generated in the sacrificial layer is then at least superficially closed with at least one material layer being deposited above the structured sacrificial layer, this material layer forming at least a part of the diaphragm layer and being structured to generate at least one etch hole for etching the sacrificial layer, which is removed from the region under the etch hole, the diaphragm and the at least one stabilizing element being laid bare, a cavity being created under the diaphragm.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: December 12, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Fuertsch, Stefan Pinter, Heribert Weber, Frank Fischer, Lars Metzger, Christoph Schelling, Frieder Sundermeier
  • Publication number: 20060063293
    Abstract: Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 23, 2006
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20060057816
    Abstract: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 16, 2006
    Inventors: Hubert Benzel, Stefan Finkbeiner, Matthias Illing, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20050181529
    Abstract: A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
    Type: Application
    Filed: December 13, 2004
    Publication date: August 18, 2005
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20050142687
    Abstract: A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
    Type: Application
    Filed: December 13, 2004
    Publication date: June 30, 2005
    Inventors: Hubert Benzel, Frank Schaefer, Simon Armbruster, Gerhard Lammel, Christoph Schelling, Joerg Brasas
  • Publication number: 20050133880
    Abstract: A method for manufacturing a micromechanical component and a micromechanical component manufactured using this method are described, the micromechanical component having a first substrate, which in turn has at least one cavity and one printed conductor. At least a part of the printed conductor is applied to at least a part of the walls of the cavity. In particular, the floor of the cavity is considered part of the cavity walls.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 23, 2005
    Inventors: Hubert Benzel, Stefan Finkbeiner, Christoph Schelling, Julian Gonska
  • Publication number: 20050115321
    Abstract: A micromechanical sensor, and a method for manufacturing a micromechanical sensor, featuring, in addition to a sensor element, at least a part of an evaluation circuit. In this context, the micromechanical sensor contains at least a first structural element made of a first material. The first structural element houses at least one sensor region and a part of an evaluation circuit, at least one sensor element being located in the sensor region. Moreover, at least one first and one second side are to be distinguished from one another in the first structural element. The first side of the first structural element features at least the sensor element, while the second side of the first structural element features at least a part of the evaluation circuit. At least parts of the sensor region and/or of the evaluation circuit are formed from the first material by micromechanical processing.
    Type: Application
    Filed: October 4, 2004
    Publication date: June 2, 2005
    Inventors: Hubert Benzel, Frank Schaefer, Christoph Schelling
  • Publication number: 20050098840
    Abstract: A micromechanical structural element, having a very stable diaphragm, implemented in a pure front process and in a layer construction on a substrate. The layer construction includes at least one sacrificial layer and one diaphragm layer above the sacrificial layer, which is structured for laying bare the diaphragm and generating stabilizing elements on the diaphragm, at least one recess being generated for a stabilizing element of the diaphragm. The structure generated in the sacrificial layer is then at least superficially closed with at least one material layer being deposited above the structured sacrificial layer, this material layer forming at least a part of the diaphragm layer and being structured to generate at least one etch hole for etching the sacrificial layer, which is removed from the region under the etch hole, the diaphragm and the at least one stabilizing element being laid bare, a cavity being created under the diaphragm.
    Type: Application
    Filed: October 19, 2004
    Publication date: May 12, 2005
    Inventors: Matthias Fuertsch, Stefan Pinter, Heribert Weber, Frank Fischer, Lars Metzger, Christoph Schelling, Frieder Sundermeier
  • Publication number: 20050020007
    Abstract: A method of producing conducting tracks and resistors in a semiconductor element that includes at least one conductive layer. The conductive layer is regionally through-oxidized so that at least one region of the conductive layer is electrically insulated by the oxidized regions with respect to the remaining regions of the conductive layer.
    Type: Application
    Filed: June 14, 2004
    Publication date: January 27, 2005
    Inventors: Heribert Weber, Christoph Schelling
  • Publication number: 20050016288
    Abstract: A micromechanical apparatus, a pressure sensor, and a method, a closed cavity being provided beneath a membrane, the membrane having a greater thickness in a first membrane region than in a second membrane region.
    Type: Application
    Filed: May 25, 2004
    Publication date: January 27, 2005
    Inventors: Joerg Muchow, Andreas Junger, Hubert Benzel, Juergen Nitsche, Frank Schaefer, Andreas Duell, Heinz-Georg Vossenberg, Christoph Schelling
  • Publication number: 20050006235
    Abstract: A sensor element has at least one heater structure, at least one first circuit trace being provided via which current is injected into the heater structure; at least one second circuit trace being provided via which the current is coupled out of the heater structure, and an arrangement for detecting the resistances of individual sections of the heater structure. According to the present invention, the arrangement for detecting the resistances includes additional, high-resistance measuring lines by which the voltage is tapped directly at the individual segments of the heater structure.
    Type: Application
    Filed: July 6, 2004
    Publication date: January 13, 2005
    Inventors: Matthias Fuertsch, Heribert Weber, Christoph Schelling