Patents by Inventor Christopher T. Brown

Christopher T. Brown has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140339532
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Jessica BENSON-SMITH, Christopher T. BROWN, Venkataramanan SESHADRI, Jing WANG
  • Publication number: 20140323637
    Abstract: A composition comprising: at least one conjugated polymer, at least one second polymer comprising repeat units represented by: (I) optionally, —[CH2—CH(Ph-OH)]— and (II) —[CH2—CH(Ph-OR)]— wherein Ph is a phenyl ring and R comprises a fluorinated group, an alkyl group, an alkylsulfonic acid group, an alkylene oxide group, or a combination thereof. Other polymers can be used as second polymer including polymers comprising modified naphthol side groups. Used in hole injection and hole transport layers for organic electronic devices. Increased lifetime and better processability can be achieved. Versatility with useful OLED emitters can be achieved. Ink formulations can be adapted for ink jet printing. The conjugated polymer can be a polythiophene. Applications include OLEDs and OPVs.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 30, 2014
    Inventors: Venkataramanan SESHADRI, Christopher T. BROWN, Brian E. WOODWORTH, Edward S. YANG
  • Patent number: 8865025
    Abstract: Use of certain materials in hole injection or hole transport layers can improve the operational lifetimes in organic electronic devices. Compositions comprising a doped conjugated polymer, doped with a redox dopant, including iodonium salt, can increase lifetimes. Inks can be formulated and cast as films in organic electronic devices including OLEDs, PHOLEDs, and OPVs. One embodiment provides a composition with a conjugated polymer doped with a redox dopant. Non-aqueous based inks can be formulated. Iodonium salts can be used.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: October 21, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Christopher T. Brown, Jessica Benson-Smith, Edward S. Yang
  • Patent number: 8859718
    Abstract: An improved polymerization method including a method comprising providing a reaction mixture comprising a first monomer, an organic oxidant, and at least one Lewis acid or Brönsted acid, wherein the first monomer comprises at least one optionally substituted heterocyclic ring, wherein the heterocyclic ring comprises at least one heteroatom; and reacting the reaction mixture to obtain a conjugated polymer. The method can reduce the content of undesirable entities in the polymer such as halogens and metals, which can be useful in organic electronic device applications. Purification methods also are adapted to remove organic and inorganic impurities.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 14, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Elena E. Sheina, Chad Landis, Venkataramanan Seshadri, Christopher T. Brown, Samuel M. Mazza
  • Publication number: 20140299858
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 9, 2014
    Inventors: Christopher T. BROWN, Venkataramanan SESHADRI
  • Publication number: 20140284573
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: PLEXTRONICS, INC.
    Inventors: Christopher T. BROWN, Mathew K. MATHAI, Venkataramanan SESHADRI
  • Patent number: 8828274
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: September 9, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Jessica Benson-Smith, Christopher T. Brown, Venkataramanan Seshadri, Jing Wang
  • Patent number: 8815639
    Abstract: A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 26, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Christopher T. Brown, Neetu Chopra, Christopher Knittel, Mathew Mathai, Venkataramanan Seshadri, Jing Wang, Brian Woodworth
  • Publication number: 20140217334
    Abstract: Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 7, 2014
    Applicant: Plextronics, Inc.
    Inventors: Christopher T. BROWN, Mark A. Bower, Venkataramanan Seshadri
  • Patent number: 8791451
    Abstract: A composition comprising: at least one conjugated polymer, at least one second polymer comprising repeat units represented by: (I) optionally, —[CH2—CH(Ph-OH)]— and (II) —[CH2—CH(Ph-OR)]— wherein Ph is a phenyl ring and R comprises a fluorinated group, an alkyl group, an alkylsulfonic acid group, an alkylene oxide group, or a combination thereof is described. Other polymers can be used as second polymer including polymers comprising modified naphthol side groups. The composition can be used in hole injection and hole transport layers for organic electronic devices. Increased lifetime and better processability can be achieved. Versatility with useful OLED emitters can be achieved. Ink formulations can be adapted for ink jet printing. The conjugated polymer can be a polythiophene. Applications include OLEDs and OPVs.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: July 29, 2014
    Assignee: Solvay USA, Inc.
    Inventors: Venkataramanan Seshadri, Christopher T. Brown, Brian E. Woodworth, Edward S. Yang
  • Patent number: 8716706
    Abstract: Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 6, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Mathew K. Mathai, Venkataramanan Seshadri
  • Patent number: 8709291
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Venkataramanan Seshadri
  • Patent number: 8691931
    Abstract: Polymers which can be used in p-type materials for organic electronic devices and photovoltaic cells. Compounds, monomers, dimers, trimers, and polymers comprising: wherein A1 and A2 each independently comprise a fused ring system comprising at least two fused rings directly covalently linked to the pyrrole rings. Good photovoltaic efficiency and lifetime can be achieved. The R group can provide solubility, environmental stability, and fine tuning of spectroscopic and/or electronic properties. Different polymer microstructures can be prepared which encourage multiple band gaps and broad and strong absorptions. The carbonyl can interact with adjacent thiophene rings to provide backbone with rigidity, induce planarity, and reduce and/or eliminate intramolecular chain twisting defects.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 8, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Christophe René Gaston Grenier, Chad Landis, Elena E. Sheina, Ting Xu
  • Patent number: 8674047
    Abstract: Compositions comprising at least one hole transport material, such as a conjugated polymer, and at least one dopant, providing improved thermal stability. Compositions can be applied to substrates and used in HIL and HTL layers and organic electronic devices such as light emitting devices such as OLEDs or OPVs. The conjugated polymer can be a polythiophene, including a 3,4-substituted polythiophene or a regioregular polythiophene. The dopant can be a silver salt such as silver tetrakis(pentafluorophenyl)borate. Improved methods of making dopant are provided.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: March 18, 2014
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Mark A. Bower, Venkataramanan Seshadri
  • Publication number: 20130324716
    Abstract: The composition described here comprises at least one hole-transporting compound, wherein the hole-transporting compound comprises a core covalently bonded to at least two arylamine groups, wherein the arylamine group optionally comprises one or more intractability groups. The composition can provide good film formation and stability when coated onto hole injection layers. Solution processing of hole transporting layers of OLEDs can be achieved with the composition described here. Good mobility can be achieved.
    Type: Application
    Filed: May 14, 2013
    Publication date: December 5, 2013
    Applicant: Plextronics, Inc.
    Inventors: Christopher T. BROWN, Jing WANG, Christophe Rene Gaston GRENIER, Christopher R. KNITTEL, Victor MIRANDA, Amanda GAVIN
  • Patent number: 8535974
    Abstract: A composition comprising: at least one compound comprising a hole transporting core, wherein the core is covalently bonded to a first arylamine group and also covalently bonded to a second arylamine group different from the first, and wherein the compound is covalently bonded to at least one intractability group, wherein the intractability group is covalently bonded to the hole transporting core, the first arylamine group, the second arylamine group, or a combination thereof, and wherein the compound has a molecular weight of about 5,000 g/mole or less. Blended mixtures of arylamine compounds, including fluorene core compounds, can provide good film formation and stability when coated onto hole injection layers. Solution processing of OLEDs is a particularly important application.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: September 17, 2013
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Neetu Chopra, Christopher R. Knittel, Mathew Mathai, Venkataramanan Seshadri, Jing Wang, Brian Woodworth
  • Patent number: 8440785
    Abstract: A composition comprising a homopolymer or a copolymer comprising bithiophene units for use in, for example, low band gap materials including uses in organic photovoltaic active layers. The band gap and other properties can be engineered by polymerization methods including selection of monomer structure and ratio of monomer components. In addition, a dimer adapted for making alternating copolymers further comprising one first monomer moiety comprising at least one bithiophene moiety compound covalently linked to one second monomer moiety comprising a different bithiophene moiety or at least one moiety that is not a bithiophene. The composition can be copolymerized to form an alternating copolymer that can be further processed to form a polymeric film used in a printed organic electronic device.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Chad Landis, Elena E. Sheina
  • Publication number: 20130009137
    Abstract: Improved OLED devices and methods of making the same using vertical phase separation to simplify processing. Vertically phase separated material can include at least one lower first layer disposed on the electrode, and at least one upper second layer different from the first layer and disposed away from the electrode or optionally on one layer comprising at least one semiconducting organic material. The first layer can be enriched with at least one first semiconducting organic material (SOM 1) and the second layer can be enriched with at least one second semiconducting organic material (SOM 2) different from the SOM 1. The ink composition can be adapted so that the film vertically phase separates into the first and second layers. Compositions and devices are also embodied herein.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Inventors: Christopher T. Brown, Neetu Chopra, Venkataramanan Seshadri, Jing Wang
  • Publication number: 20120277367
    Abstract: Use of certain materials in hole injection layer and/or hole transport layer can improve operational lifetimes in organic devices. Polymers having fused aromatic side groups such as polyvinylnaphthol polymers can be used in conjunction with conjugated polymers. Inks can be formulated and cast as films in organic electronic devices including OLEDs, SMOLEDs, and PLEDs. One embodiment provides a composition comprising: at least one conjugated polymer, and at least one second polymer different from the conjugated polymer comprising at least one optionally substituted fused aromatic hydrocarbon side group. The substituent can be hydroxyl. Aqueous-based inks can be formulated.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Inventors: Christopher T. Brown, Venkataramanan Seshadri
  • Patent number: 8283002
    Abstract: Oligomers and/or polymers comprising a backbone comprising arylamine and fluorinated alkyleneoxy moieties which may be crosslinked. Ink formulations and devices can be formed from the oligomers or polymers, or corresponding monomers. Doped compositions can be formed. Charge injection and transport layers can be formed. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: October 9, 2012
    Assignee: Plextronics, Inc.
    Inventors: Christopher T. Brown, Venkataramanan Shesadri, Jing Wang