Patents by Inventor Christopher W. Petz

Christopher W. Petz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210175239
    Abstract: A ferroelectric capacitor comprises two conductive capacitor electrodes having ferroelectric material there-between. At least one of the capacitor electrodes comprise MxSiOy, where “M” is at least one of Ru, Ti, Ta, Co, Pt, Ir, Os, Mo, V, W, Sr, Re, Rh, Pd, La, Zn, In, Sn, and Nb. Other aspects, including method, are disclosed.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Clement Jacob, Vassil N. Antonov, Jaydeb Goswami, Albert Liao, Christopher W. Petz, Durai Vishak Nirmal Ramaswamy
  • Publication number: 20210175072
    Abstract: A material deposition system comprises a dopant source containing at least one dopant precursor material, an inert gas source containing at least one noble gas, and a physical vapor deposition apparatus in selective fluid communication with the dopant source and the inert gas source. The physical vapor deposition apparatus comprises a housing structure, a target electrode, and a substrate holder. The housing structure is configured and positioned to receive at least one feed fluid stream comprising the at least one dopant precursor material and the at least one noble gas. The target electrode is within the housing structure and is in electrical communication with a signal generator. The substrate holder is within the housing structure and is spaced apart from the target electrode. A method of forming a microelectronic device, a microelectronic device, a memory device, and an electronic system are also described.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 10, 2021
    Inventors: Clement Jacob, Richard L. Elliott, Christopher W. Petz
  • Patent number: 11018298
    Abstract: A phase change memory structure (100) includes a phase change material layer (110), a top electrode layer (120) above the phase change material layer, a metal silicon nitride layer (130) in contact with the top electrode layer opposite from the phase change material layer, a metal silicide layer (140) in contact with the metal silicon nitride layer opposite from the top electrode layer, and a conductive metal bit line (150) in contact with the metal silicide layer opposite from the metal silicon nitride layer.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: May 25, 2021
    Assignee: Intel Corporation
    Inventors: Christopher W. Petz, David R. Economy
  • Patent number: 10991882
    Abstract: A resistive memory element comprises a first electrode, an active material over the first electrode, a buffer material over the active material and comprising longitudinally extending, columnar grains of crystalline material, an ion reservoir material over the buffer material, and a second electrode over the ion reservoir material. A memory cell, a memory device, an electronic system, and a method of forming a resistive memory element are also described.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: April 27, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Christopher W. Petz, Yongjun Jeff Hu, Scott E. Sills, D. V. Nirmal Ramaswamy
  • Patent number: 10957644
    Abstract: Some embodiments include an integrated structure having a conductive region which contains one or more elements from Group 2 of the periodic table. Some embodiments include an integrated structure which has a conductive region over and directly against a base material. The conductive region includes one or more elements from Group 2 of the periodic table, and has a pair of opposing sidewalls along a cross-section. A capping material is over and directly against the conductive region. Protective material is along and directly against the sidewalls of the protective region.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Christopher W. Petz, Everett A. McTeer
  • Patent number: 10916564
    Abstract: Some embodiments include an assembly which has channel material pillars, and which has memory cells along the channel material pillars. A conductive structure is under the channel material pillars. The conductive structure has doped semiconductor material in direct contact with bottom regions of the channel material pillars. One or more of magnesium, scandium, yttrium and lanthanide elements is along the bottom regions of the channel material pillars. Some embodiments include methods of forming assemblies. A structure is formed, and a mass is formed against an upper surface of the structure. Plugs are formed within openings in the mass. The plugs comprise a second material over a first material. The first material includes one or more of magnesium, scandium, yttrium and lanthanide elements. Openings are formed to terminate on the first material, and are then extended through the first material. Channel material pillars are formed within the openings.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: February 9, 2021
    Assignee: Micron Technology, Inc.
    Inventors: David Ross Economy, John Mark Meldrim, Haoyu Li, Yongjun Jeff Hu, Christopher W. Petz, Daniel Billingsley, Everett A. McTeer
  • Publication number: 20210013318
    Abstract: Apparatuses, methods, and systems related to electrode formation are described. A first portion of a top electrode is formed over a dielectric material of a storage node. A metal oxide is formed over the first portion of the electrode. A second portion of the electrode is formed over the metal oxide.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 14, 2021
    Inventors: An-Jen B. Cheng, Brenda D. Kraus, Sanket S. Kelkar, Matthew N. Rocklein, Christopher W. Petz, Richard Beeler, Dojun Kim
  • Publication number: 20210013213
    Abstract: An apparatus comprising a memory array comprising access lines. Each of the access lines comprises an insulating material adjacent a bottom surface and sidewalls of a base material, a first conductive material adjacent the insulating material, a second conductive material adjacent the first conductive material, and a barrier material between the first conductive material and the second conductive material. The barrier material is configured to suppress migration of reactive species from the second conductive material. Methods of forming the apparatus and electronic systems are also disclosed.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Inventors: Dojun Kim, Christopher W. Petz, Sanket S. Kelkar, Hidekazu Nobuto
  • Publication number: 20200365684
    Abstract: Methods, apparatuses, and systems related to forming a barrier material on an electrode are described. An example method includes forming a top electrode of a storage node on a dielectric material in a semiconductor fabrication sequence and forming, in-situ in a semiconductor fabrication apparatus, a barrier material on the top electrode to reduce damage to the dielectric material when ex-situ of the semiconductor fabrication apparatus.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 19, 2020
    Inventors: Sanket S Kelkar, An-Jen B. Cheng, Dojun Kim, Christopher W. Petz, Matthew N. Rocklein, Brenda D. Kraus
  • Patent number: 10811419
    Abstract: Methods, apparatuses, and systems related to shaping a storage node material are described. An example method includes forming a pillar with a pattern of materials. The method further includes depositing a storage node material on a side of the pillar. The method further includes etching sacrificial materials within the pillar. The method further includes etching the storage node material in a direction from the pillar into the storage node.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: October 20, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Devesh Dadhich Shreeram, Sanket S. Kelkar, Gurpreet S. Lugani, Paul A. Paduano, Matthew N. Rocklein, Sanjeev Sapra, Christopher W. Petz
  • Publication number: 20200321340
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Publication number: 20200266210
    Abstract: Some embodiments include an assembly which has channel material pillars, and which has memory cells along the channel material pillars. A conductive structure is under the channel material pillars. The conductive structure has doped semiconductor material in direct contact with bottom regions of the channel material pillars. One or more of magnesium, scandium, yttrium and lanthanide elements is along the bottom regions of the channel material pillars. Some embodiments include methods of forming assemblies. A structure is formed, and a mass is formed against an upper surface of the structure. Plugs are formed within openings in the mass. The plugs comprise a second material over a first material. The first material includes one or more of magnesium, scandium, yttrium and lanthanide elements. Openings are formed to terminate on the first material, and are then extended through the first material. Channel material pillars are formed within the openings.
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Applicant: Micron Technology, Inc.
    Inventors: David Ross Economy, John Mark Meldrim, Haoyu Li, Yongjun Jeff Hu, Christopher W. Petz, Daniel Billingsley, Everett A. McTeer
  • Patent number: 10707212
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: July 7, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Publication number: 20200212046
    Abstract: A method of forming an apparatus comprises forming a first metal nitride material over an upper surface of a conductive material within an opening extending through at least one dielectric material through a non-conformal deposition process. A second metal nitride material is formed over an upper surface of the first metal nitride material and side surfaces of the at least one dielectric material partially defining boundaries of the opening through a conformal deposition process. A conductive structure is formed over surfaces of the second metal nitride material within the opening. Apparatuses and electronic systems are also described.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Kentaro Ishii, Yongjun J. Hu, Amirhasan Nourbakhsh, Durai Vishak Nirmal Ramaswamy, Christopher W. Petz, Luca Fumagalli
  • Patent number: 10700091
    Abstract: Some embodiments include an assembly which has channel material pillars, and which has memory cells along the channel material pillars. A conductive structure is under the channel material pillars. The conductive structure has doped semiconductor material in direct contact with bottom regions of the channel material pillars. One or more of magnesium, scandium, yttrium and lanthanide elements is along the bottom regions of the channel material pillars. Some embodiments include methods of forming assemblies. A structure is formed, and a mass is formed against an upper surface of the structure. Plugs are formed within openings in the mass. The plugs comprise a second material over a first material. The first material includes one or more of magnesium, scandium, yttrium and lanthanide elements. Openings are formed to terminate on the first material, and are then extended through the first material. Channel material pillars are formed within the openings.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: June 30, 2020
    Assignee: Micron Technology, Inc.
    Inventors: David Ross Economy, John Mark Meldrim, Haoyu Li, Yongjun Jeff Hu, Christopher W. Petz, Daniel Billingsley, Everett A. McTeer
  • Patent number: 10692572
    Abstract: Memory devices and methods for fabricating memory devices have been disclosed. One such method includes forming a memory stack out of a plurality of elements. A sidewall liner is formed on a sidewall of the memory stack using a physical vapor deposition (PVD) process, including an adhesion species and a dielectric, such that the adhesion species intermixes with an element of the memory stack to terminate unsatisfied atomic bonds of the element and the dielectric forms a dielectric film with the adhesive species on the sidewall.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: June 23, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Yongjun Jeff Hu, Tsz W. Chan, Christopher W. Petz, Everett Allen McTeer
  • Publication number: 20200185406
    Abstract: A semiconductor device comprises a semiconductor material extending through a stack of alternating levels of a conductive material and an insulative material, and a material comprising cerium oxide and at least another oxide adjacent to the semiconductor material. Related electronic systems and methods are also disclosed.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 11, 2020
    Inventors: Haoyu Li, Everett A. McTeer, Christopher W. Petz, Yongjun J. Hu
  • Publication number: 20200119270
    Abstract: A phase change memory structure (100) includes a phase change material layer (110), a top electrode layer (120) above the phase change material layer, a metal silicon nitride layer (130) in contact with the top electrode layer opposite from the phase change material layer, a metal silicide layer (140) in contact with the metal silicon nitride layer opposite from the top electrode layer, and a conductive metal bit line (150) in contact with the metal silicide layer opposite from the metal silicon nitride layer.
    Type: Application
    Filed: July 1, 2017
    Publication date: April 16, 2020
    Applicant: Intel Corporation
    Inventors: Christopher W. Petz, David R. Economy
  • Patent number: 10546848
    Abstract: An integrated assembly includes an insulative mass with a first region adjacent to a second region. The first region has a greater amount of one or more inert interstitial elements incorporated therein than does the second region. Some embodiments include an integrated assembly which has vertically-extending channel material pillars, and which has memory cells along the channel material pillars. A conductive structure is under the channel material pillars. The conductive structure includes doped semiconductor material in direct contact with bottom regions of the channel material pillars. An insulative mass is along the bottom regions of the channel material pillars. The insulative mass has an upper region over a lower region. The lower region has a greater amount of one or more inert interstitial elements incorporated therein than does the upper region. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 28, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Daniel Billingsley, Everett A. McTeer, Christopher W. Petz, Haoyu Li, John Mark Meldrim, Yongjun Jeff Hu
  • Publication number: 20200013955
    Abstract: A resistive memory element comprises a first electrode, an active material over the first electrode, a buffer material over the active material and comprising longitudinally extending, columnar grains of crystalline material, an ion reservoir material over the buffer material, and a second electrode over the ion reservoir material. A memory cell, a memory device, an electronic system, and a method of forming a resistive memory element are also described.
    Type: Application
    Filed: August 27, 2019
    Publication date: January 9, 2020
    Inventors: Christopher W. Petz, Yongjun Jeff Hu, Scott E. Sills, D. V. Nirmal Ramaswamy