Patents by Inventor Christy S Tyberg

Christy S Tyberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6783862
    Abstract: A structure useful for electrical interconnection comprises a substrate; a plurality of porous dielectric layers disposed on the substrate; an etch stop layer disposed between a first of the dielectric layers and a second of the dielectric layers; and at least one thin, tough, non-porous dielectric layer disposed between at least one of the porous dielectric layers and the etch stop layer. A method for forming the structure comprising forming a multilayer stack of porous dielectric layers on the substrate, the stack including the plurality of porous dielectric layers, and forming a plurality of patterned metal conductors within the multilayer stack. Curing of the multilayer dielectric stack may be in a single cure step in a furnace. The application and hot plate baking of the individual layers of the multi layer dielectric stack may be accomplished in a single spin-coat tool, without being removed, to fully cure the stack until all dielectric layers have been deposited.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: August 31, 2004
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey C Hedrick, Kang-Wook Lee, Kelly Malone, Christy S Tyberg
  • Publication number: 20040147111
    Abstract: Interconnect structures having buried etch stop layers with low dielectric constants and methods relating to the generation of such buried etch stop layers are described herein. The inventive interconnect structure comprises a buried etch stop layer comprised of a polymeric material having a composition SivNwCxOyHz, where 0.05≦v≦0.8, 0≦w≦0.9, 0.05≦x≦0.8, 0≦y≦0.3, 0.05≦z≦0.8 for v+w+x+y+z=1; a via level interlayer dielectric that is directly below said buried etch stop layer; a line level interlayer dielectric that is directly above said buried etch stop layer; and conducting metal features that traverse through said via level dielectric, said line level dielectric, and said buried etch stop layer.
    Type: Application
    Filed: October 31, 2003
    Publication date: July 29, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Elbert E. Huang, Kaushik A. Kumar, Kelly Malone, Dirk Pfeiffer, Muthumanickam Sankarapandian, Christy S. Tyberg
  • Publication number: 20040142565
    Abstract: A method of reworking BEOL (back end of a processing line) metallization levels of damascene metallurgy comprises forming a plurality of BEOL metallization levels over a substrate, forming line and via portions in the BEOL metallization levels, selectively removing at least one of the BEOL metallization levels to expose the line and via portions, and replacing the removed BEOL metallization levels with at least one new BEOL metallization level, wherein the BEOL metallization levels comprise a first dielectric layer and a second dielectric layer, and wherein the first dielectric layer comprising a lower dielectric constant material than the second dielectric layer.
    Type: Application
    Filed: October 16, 2003
    Publication date: July 22, 2004
    Inventors: Edward C. Cooney, Robert M. Geffken, Vincent J. McGahay, William T. Motsiff, Mark P. Murray, Amanda L. Piper, Anthony K. Stamper, David C. Thomas, Christy S. Tyberg, Elizabeth T. Webster
  • Publication number: 20040130027
    Abstract: A method and structure for forming an integrated circuit structure is disclosed that forms at least one first layer comprising logical and functional devices and forms at least one interconnection layer above the first layer. The interconnection layer is adapted to form electrical connections between the logical and functional devices. The interconnection layer is made by first forming a dielectric layer. The dielectric layer includes a first material and a second material, wherein the second material is less stable at manufacturing environmental conditions (e.g., the processing conditions discussed below) than the first material. The “second material” comprises a porogen and the “first material” comprises a matrix polymer. The invention then forms conductive features in the dielectric layer and removes (e.g., by heating) the second material from the dielectric layer to create air pockets in the interconnection layer where the second material was positioned.
    Type: Application
    Filed: January 7, 2003
    Publication date: July 8, 2004
    Applicant: International Business Machines Corporation
    Inventors: Shyng-Tsong Chen, Stephen M. Gates, Jeffrey C. Hedrick, Kelly Malone, Satyanarayana Nitta, Christy S. Tyberg
  • Publication number: 20040126586
    Abstract: A crosslinked polyarylene material with a reduced coefficient of thermal expansion at high temperatures compared with conventional crosslinked polyarylene materials is provided. In addition, an integrated circuit article containing a crosslinked polyarylene polymer with reduced coefficient of thermal expansion at high temperatures is provided.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Jeffrey C. Hedrick, Muthumanickam Sankarapandian, Christy S. Tyberg, James P. Godschalx, Qingshan J. Niu, Harry C. Silvis
  • Publication number: 20040018717
    Abstract: An electrical interconnect structure on a substrate, includes a first porous dielectric layer with surface region from which a porogen has been removed; and an etch stop layer disposed upon the first porous dielectric layer so that the etch stop layer extends to partially fill pores in the surface region of the first porous dielectric layer from which the porogen has been removed, thus improving adhesion during subsequent processing. The porogen may be removed from the surface region by heating, and in particular by hot plate baking. A second porous dielectric layer, which may have the same composition as the first porous dielectric layer, may be formed over the etch stop layer. Electrical vias and lines may be formed in the first and second porous dielectric layer, respectively. The layers may be part of a multilayer stack, wherein all of the layers are cured simultaneously in a spin application tool porous dielectric layer.
    Type: Application
    Filed: June 23, 2003
    Publication date: January 29, 2004
    Applicant: International Business Machines Corporation
    Inventors: Ann R. Fornof, Jeffrey C. Hedrick, Kang-Wook Lee, Christy S. Tyberg
  • Patent number: 6674168
    Abstract: A method of reworking BEOL (back end of a processing line) metallization levels of damascene metallurgy comprises forming a plurality of BEOL metallization levels over a substrate, forming line and via portions in the BEOL metallization levels, selectively removing at least one of the BEOL metallization levels to expose the line and via portions, and replacing the removed BEOL metallization levels with at least one new BEOL metallization level, wherein the BEOL metallization levels comprise a first dielectric layer and a second dielectric layer, and wherein the first dielectric layer comprising a lower dielectric constant material than the second dielectric layer.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: January 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M Geffken, Vincent J McGahay, William T. Motsiff, Mark P. Murray, Amanda L. Piper, Anthony K. Stamper, David C. Thomas, Christy S. Tyberg, Elizabeth T. Webster
  • Patent number: 6638878
    Abstract: A method for forming a planarized dielectric layer upon a semiconductor wafer is disclosed. In an exemplary embodiment of the invention, the method includes applying an adhesion promoter to the wafer, thereby forming an adhesion promoter layer. A dielectric material is applied in a spin-on fashion upon the adhesion promoter layer at a relative humidity of less than 40% and for a thickness setting duration of less than 30 seconds. Then, the dielectric material is dried by baking without additional spinning of the semiconductor wafer.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: October 28, 2003
    Assignee: International Business Machines Corporation
    Inventors: Darryl D. Restaino, Jeffrey C. Hedrick, John A. Fitzsimmons, Christy S. Tyberg, Chih-Chien Liu, Shahab Siddiqui
  • Publication number: 20030111263
    Abstract: An electrical interconnect structure on a substrate, includes a first porous dielectric layer with surface region from which a porogen has been removed; and an etch stop layer disposed upon the first porous dielectric layer so that the etch stop layer extends to partially fill pores in the surface region of the first porous dielectric layer from which the porogen has been removed, thus improving adhesion during subsequent processing. The porogen may be removed from the surface region by heating, and in particular by hot plate baking. A second porous dielectric layer, which may have the same composition as the first porous dielectric layer, may be formed over the etch stop layer. Electrical vias and lines may be formed in the first and second porous dielectric layer, respectively. The layers may be part of a multilayer stack, wherein all of the layers are cured simultaneously in a spin application tool porous dielectric layer.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 19, 2003
    Applicant: International Business Machines Corporation
    Inventors: Ann R. Fornof, Jeffrey C. Hedrick, Kang-Wook Lee, Christy S. Tyberg
  • Publication number: 20030114013
    Abstract: A structure useful for electrical interconnection comprises a substrate; a plurality of porous dielectric layers disposed on the substrate; an etch stop layer disposed between a first of the dielectric layers and a second of the dielectric layers; and at least one thin, tough, non-porous dielectric layer disposed between at least one of the porous dielectric layers and the etch stop layer. A method for forming the structure comprising forming a multilayer stack of porous dielectric layers on the substrate, the stack including the plurality of porous dielectric layers, and forming a plurality of patterned metal conductors within the multilayer stack. Curing of the multilayer dielectric stack may be in a single cure step in a furnace. The application and hot plate baking of the individual layers of the multi layer dielectric stack may be accomplished in a single spin-coat tool, without being removed, to fully cure the stack until all dielectric layers have been deposited.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 19, 2003
    Applicant: International Business Machines Corporation
    Inventors: Jeffrey C. Hedrick, Kang-Wook Lee, Kelly Malone, Christy S. Tyberg
  • Publication number: 20030064605
    Abstract: A method for forming a planarized dielectric layer upon a semiconductor wafer is disclosed. In an exemplary embodiment of the invention, the method includes applying an adhesion promoter to the wafer, thereby forming an adhesion promoter layer. A dielectric material is applied in a spin-on fashion upon the adhesion promoter layer at a relative humidity of less than 40% and for a thickness setting duration of less than 30 seconds. Then, the dielectric material is dried by baking without additional spinning of the semiconductor wafer.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Applicant: International Business Machines Corporation
    Inventors: Darryl D. Restaino, Jeffrey C. Hedrick, John A. Fitzsimmons, Christy S. Tyberg, Chih-Chien Liu, Shahab Siddiqui
  • Publication number: 20030062336
    Abstract: A method for removing a dielectric layer formed upon a semiconductor substrate is disclosed. In an exemplary embodiment of the invention, the method includes subjecting the dielectric layer to a dry etch process and subjecting an adhesion promoter layer underneath the dielectric layer to a wet etch process.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 3, 2003
    Applicant: International Business Machines Corporation
    Inventors: Darryl D. Restaino, Delores Bennett, John A. Fitzsimmons, John Fritche, Jeffrey C. Hedrick, Chih-Chien Liu, Shahab Siddiqui, Christy S. Tyberg
  • Patent number: 6090486
    Abstract: Fiber reinforced thermosetting matrix materials are advantageously created using fibers that are coated with a coating containing a nucleophilic initiator or have a surface treatment which creates a nucleophilic initiator on the surface. The fibers are combined with the thermosetting matrix materials just before curing of the matrix material is desired. These fibers and this methodology avoid premature curing, allow higher levels of initiator to be used to ensure rapid cure, and allow the thermosetting matrix materials to be heated to reduce viscosity.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Virginia Polytechnic Institute & State University
    Inventors: Judy S. Riffle, Christy S. Tyberg, James E. McGrath