Patents by Inventor Chu-Feng Chen

Chu-Feng Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936299
    Abstract: A transistor includes a gate structure over a substrate, wherein the substrate includes a channel region. The transistor further includes a source/drain (S/D) in the substrate adjacent to the gate structure. The transistor further includes a lightly doped drain (LDD) region adjacent to the S/D, wherein a dopant concentration in the first LDD is less than a dopant concentration in the S/D. The transistor further includes a doping extension region adjacent the LDD region, wherein the doping extension region extends farther under the gate structure than the LDD region, and a maximum depth of the doping extension region is 10-times to 30-times greater than a maximum depth of the LDD.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chu Fu Chen, Chi-Feng Huang, Chia-Chung Chen, Chin-Lung Chen, Victor Chiang Liang, Chia-Cheng Pao
  • Publication number: 20230253494
    Abstract: A high voltage device includes: a semiconductor layer, a well, a drift oxide region, a body region, a gate, a source, a drain, and a field plate. The well has a first conductivity type, and is formed in a semiconductor layer. The drift oxide region is formed on the semiconductor layer. The body region has a second conductivity type, and is formed in the semiconductor layer, wherein the body region and a drift region are connected in a channel direction. The gate is formed on the semiconductor layer. The source and the drain have the first conductivity type, and are formed in the semiconductor layer, wherein the source and the drain are in the body region and the well, respectively. The field plate is formed on and connected with the drift oxide region, wherein the field plate is electrically conductive and has a temperature coefficient (TC) not higher than 4 ohm/° C.
    Type: Application
    Filed: June 22, 2022
    Publication date: August 10, 2023
    Inventors: Kuo-Hsuan Lo, Chien-Hao Huang, Yu-Ting Yeh, Chu-Feng Chen, Wu-Te Weng
  • Publication number: 20230046174
    Abstract: A power device includes: a semiconductor layer, a well region, a body region, a gate, a source, a drain, a first salicide block (SAB) layer and a second SAB layer. The first SAB layer is formed on a top surface of the semiconductor layer, and is located between the gate and the drain, wherein a part of the well is located vertically below and in contact with the first SAB layer. The second SAB layer is formed vertically above and in contact with the first SAB layer.
    Type: Application
    Filed: May 5, 2022
    Publication date: February 16, 2023
    Inventors: Kuo-Hsuan Lo, Chien-Hao Huang, Chu-Feng Chen, Wu-Te Weng
  • Publication number: 20230045843
    Abstract: A power device includes: a semiconductor layer, a well region, a body region, a gate, a source, a drain, a field oxide region, and a self-aligned drift region. The field oxide region is formed on an upper surface of the semiconductor layer, wherein the field oxide region is located between the gate and the drain. The field oxide region is formed by steps including a chemical mechanical polish (CMP) process step. The self-aligned drift region is formed in the semiconductor layer, wherein the self-aligned drift region is entirely located vertically below and in contact with the field oxide region.
    Type: Application
    Filed: May 19, 2022
    Publication date: February 16, 2023
    Inventors: Yu-Ting Yeh, Kuo-Hsuan Lo, Chien-Hao Huang, Chu-Feng Chen, Wu-Te Weng
  • Publication number: 20220376110
    Abstract: A power device includes: a semiconductor layer, a well region, a body region, a gate, a sub-gate, a source, a drain, and an electric field adjustment region. The sub-gate is formed above a top surface of the semiconductor layer, wherein a portion of the well region is located vertically beneath the sub-gate. The sub-gate is not directly connected to the gate. The electric field adjustment region has a conductivity type which is opposite to that of the well region. The electric field adjustment region is formed beneath and not in contact with the top surface of the semiconductor layer. The electric field adjustment region is located in the well region of the semiconductor layer, and at least a portion of the electric field adjustment region is located vertically beneath the sub-gate.
    Type: Application
    Filed: April 21, 2022
    Publication date: November 24, 2022
    Inventors: Kuo-Hsuan Lo, Chien-Hao Huang, Chu-Feng Chen, Wu-Te Weng, Chien-Wei Chiu
  • Publication number: 20220165880
    Abstract: A high voltage device includes: a semiconductor layer, a well, a body region, a gate, a source, a drain, and a drift oxide region. The semiconductor layer is formed on a substrate, wherein the semiconductor layer has at least one trench. The well is formed in the semicoducotor layer. The body region is formed in the well. The gate is formed on the well, and is in contact with the well. The source and the drain are located below, outside, and at different sides of the gate, in the body region and the well respectively. The drift oxide region is formed on a drift region, wherein a bottom surface of the drift oxide region is higher than a bottom surface of the trench.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 26, 2022
    Inventors: Tsung-Yi Huang, Kun-Huang Yu, Ying-Shiou Lin, Chu-Feng Chen, Chung-Yu Hung, Yi-Rong Tu
  • Patent number: 10868115
    Abstract: A high voltage device includes: a semiconductor layer, an isolation region, a deep well, a buried layer, a first high voltage well, a first conductivity type well, a second high voltage well, a body region, a body contact, a deep well column, a gate, a source and a drain. The deep well column is located between the drain and a boundary of the conductive layer which is near the source in a channel direction. The deep well column is a minority carriers absorption channel, to avoid turning ON a parasitic transistor in the high voltage device.
    Type: Grant
    Filed: June 22, 2019
    Date of Patent: December 15, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Patent number: 10680059
    Abstract: A high voltage MOS device includes: a well, a drift region, a gate, a source, a drain, and plural buried columns. A part of the gate is stacked on a part of the well, and another part of the gate is stacked on a part of the drift region. The source connects the well in a lateral direction. The drain connects the drift region in the lateral direction. The drain and the source are separated by the well and the drift region, and the drain and the source are located at different sides of the gate. The plural buried columns are formed beneath the top surface by a predetermined distance, and each buried column does not connect the top surface. At least a part of every buried column is surrounded by the drift region, and the buried columns and the drift region are arranged in an alternating manner.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 9, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Patent number: 10629726
    Abstract: The present disclosure provides a high-voltage semiconductor device, including: a substrate; an epitaxial layer disposed over the substrate and having a first conductive type; a gate structure disposed over the epitaxial layer; a source region and a drain region disposed in the epitaxial layer at opposite sides of the gate structure respectively; and a stack structure disposed between the gate structure and the drain region, wherein the stack structure includes: a blocking layer; an insulating layer disposed over the blocking layer; and a conductive layer disposed over the insulating layer and electrically connected the source region or the gate structure. The present disclosure also provides a method for manufacturing the high-voltage semiconductor device.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 21, 2020
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Chung-Ren Lao, Hsing-Chao Liu, Chu-Feng Chen, Wei-Chun Chou
  • Patent number: 10622473
    Abstract: A high voltage MOS device includes: a well, a body region, a gate, a source, plural body contact regions and a drain. The plural body contact regions are formed in the body region, wherein each of the body contact region is located beneath the top surface and contacts the top surface in the vertical direction, and is in contact or not in contact with the gate in the lateral direction. The plural body contact regions are arranged substantially in parallel in the width direction and any two neighboring body contact regions are not in contact with each other in the width direction. The gate includes a poly-silicon layer which serves as the only electrical contact of the gate, and every part of the poly-silicon layer is the first conductivity type.
    Type: Grant
    Filed: August 19, 2018
    Date of Patent: April 14, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen, YU-Ting Yeh
  • Patent number: 10622440
    Abstract: A high voltage MOS device includes: a first drift region with a first conductive type, a body region with a second conductive type, plural second drift regions with the second conductive type, a gate, a source region with the first conductive type, a drain with the first conductive type, and a body contact region with the second conductive type. The plural second drift regions contact the body region along the lateral direction, and are located separately in the width direction. Any neighboring two second drift regions do not contact each other. Each of the second drift regions is separated from the drain by the first drift region.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 14, 2020
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Publication number: 20200111906
    Abstract: A high voltage device includes: a semiconductor layer, a well, a body region, a gate, a source, a drain, and a drift oxide region. The semiconductor layer is formed on a substrate, wherein the semiconductor layer has at least one trench. The well is formed in the semiconductor layer. The body region is formed in the well. The gate is formed on the well, and is in contact with the well. The source and the drain are located below, outside, and at different sides of the gate, in the body region and the well respectively. The drift oxide region is formed on a drift region, wherein a bottom surface of the drift oxide region is higher than a bottom surface of the trench.
    Type: Application
    Filed: August 13, 2019
    Publication date: April 9, 2020
    Inventors: Tsung-Yi Huang, Kun-Huang Yu, Ying-Shiou Lin, Chu-Feng Chen, Chung-Yu Hung, Yi-Rong Tu
  • Publication number: 20200044022
    Abstract: A high voltage device includes: a semiconductor layer, an isolation region, a deep well, a buried layer, a first high voltage well, a first conductivity type well, a second high voltage well, a body region, a body contact, a deep well column, a gate, a source and a drain. The deep well column is located between the drain and a boundary of the conductive layer which is near the source in a channel direction. The deep well column is a minority carriers absorption channel, to avoid turning ON a parasitic transistor in the high voltage device.
    Type: Application
    Filed: June 22, 2019
    Publication date: February 6, 2020
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Publication number: 20190131390
    Abstract: A high voltage MOS device includes: a well, a drift region, a gate, a source, a drain, and plural buried columns. A part of the gate is stacked on a part of the well, and another part of the gate is stacked on a part of the drift region. The source connects the well in a lateral direction. The drain connects the drift region in the lateral direction. The drain and the source are separated by the well and the drift region, and the drain and the source are located at different sides of the gate. The plural buried columns are formed beneath the top surface by a predetermined distance, and each buried column does not connect the top surface. At least a part of every buried column is surrounded by the drift region, and the buried columns and the drift region are arranged in an alternating manner.
    Type: Application
    Filed: September 13, 2018
    Publication date: May 2, 2019
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Publication number: 20190115468
    Abstract: A high voltage MOS device includes: a well, a body region, a gate, a source, plural body contact regions and a drain. The plural body contact regions are formed in the body region, wherein each of the body contact region is located beneath the top surface and contacts the top surface in the vertical direction, and is in contact or not in contact with the gate in the lateral direction. The plural body contact regions are arranged substantially in parallel in the width direction and any two neighboring body contact regions are not in contact with each other in the width direction. The gate includes a poly-silicon layer which serves as the only electrical contact of the gate, and every part of the poly-silicon layer is the first conductivity type.
    Type: Application
    Filed: August 19, 2018
    Publication date: April 18, 2019
    Inventors: Tsung-Yi Huang, Chu-Feng Chen, Yu-Ting Yeh
  • Publication number: 20190096992
    Abstract: A high voltage MOS device includes: a first drift region with a first conductive type, a body region with a second conductive type, plural second drift regions with the second conductive type, a gate, a source region with the first conductive type, a drain with the first conductive type, and a body contact region with the second conductive type. The plural second drift regions contact the body region along the lateral direction, and are located separately in the width direction. Any neighboring two second drift regions do not contact each other. Each of the second drift regions is separated from the drain by the first drift region.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Patent number: 10236375
    Abstract: A high voltage MOS device includes: a well region with a first conductive type, a body region with a second conductive type, a gate, plural source regions with the first conductive type, a drain region with the first conductive type, and a body contact region with the second conductive type. The plural source regions contact the gate, and are substantially arranged in parallel along a width direction, and each two neighboring source regions are not contacted with each other. The body connection region extends along the width direction and overlaps with at least two of the source regions, such that the body connection region includes at least a first region and a second region, wherein the first region overlaps with at least one of the source regions, and the second region does not overlap any of the regions. The contact region does not contact the gate along a lateral direction.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 19, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Patent number: 10177220
    Abstract: A high voltage MOS device includes: a first drift region with a first conductive type, a body region with a second conductive type, plural second drift regions with the second conductive type, a gate, a source region with the first conductive type, a drain with the first conductive type, and a body contact region with the second conductive type. The plural second drift regions contact the body region along the lateral direction, and are located separately in the width direction. Any neighboring two second drift regions do not contact each other. Each of the second drift regions is separated from the drain by the first drift region.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 8, 2019
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Publication number: 20180350903
    Abstract: A high voltage MOS device includes: a first drift region with a first conductive type, a body region with a second conductive type, plural second drift regions with the second conductive type, a gate, a source region with the first conductive type, a drain with the first conductive type, and a body contact region with the second conductive type. The plural second drift regions contact the body region along the lateral direction, and are located separately in the width direction. Any neighboring two second drift regions do not contact each other. Each of the second drift regions is separated from the drain by the first drift region.
    Type: Application
    Filed: July 27, 2017
    Publication date: December 6, 2018
    Inventors: Tsung-Yi Huang, Chu-Feng Chen
  • Publication number: 20180331211
    Abstract: A high voltage MOS device includes: a well region with a first conductive type, a body region with a second conductive type, a gate, plural source regions with the first conductive type, a drain region with the first conductive type, and a body contact region with the second conductive type. The plural source regions contact the gate, and are substantially arranged in parallel along a width direction, and each two neighboring source regions are not contacted with each other. The body connection region extends along the width direction and overlaps with at least two of the source regions, such that the body connection region includes at least a first region and a second region, wherein the first region overlaps with at least one of the source regions, and the second region does not overlap any of the regions. The contact region does not contact the gate along a lateral direction.
    Type: Application
    Filed: February 5, 2018
    Publication date: November 15, 2018
    Inventors: Tsung-Yi Huang, Chu-Feng Chen