Patents by Inventor Chu Yu

Chu Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145581
    Abstract: In a method of manufacturing a semiconductor device, a fin structure having a channel region protruding from an isolation insulating layer disposed over a semiconductor substrate is formed, a cleaning operation is performed, and an epitaxial semiconductor layer is formed over the channel region. The cleaning operation and the forming the epitaxial semiconductor layer are performed in a same chamber without breaking vacuum.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Wen CHIU, Yi Che CHAN, Lun-Kuang TAN, Zheng-Yang PAN, Cheng-Po CHAU, Pin-Chu LIANG, Hung-Yao CHEN, De-Wei YU, Yi-Cheng LI
  • Publication number: 20240129012
    Abstract: A wearable device includes a frame element and a dielectric substrate. The frame element includes a first metal element, a second metal element, and a third metal element. A first gap is provided between the first metal element and the second metal element. A second gap is provided between the second metal element and the third metal element. A third gap is provided between the third metal element and the first metal element. The dielectric substrate is surrounded by the first metal element, the second metal element, and the third metal element. A first antenna element is formed by the first metal element. A second antenna element is formed by the second metal element. A third antenna element is formed by the third metal element.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 18, 2024
    Inventors: Jing-Yao XU, Chung-Ting HUNG, Chun-Yuan WANG, Chu-Yu TANG, Yi-Chih LO, Yu-Chen ZHAO, Chih-Tsung TSENG
  • Patent number: 11334116
    Abstract: A screen protector comprises a glass-based substrate and an adhesive. The glass-based substrate comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface comprises a first planar portion and a peripheral portion extending outwardly from the first planar portion. The second major surface comprises a second planar portion opposite the first planar portion and is parallel to the first planar portion. The edge comprises an outer peripheral surface that intersects the peripheral portion of the first major surface. The adhesive comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface of the adhesive is adhered to the second major surface of the glass-based substrate.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: May 17, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Sean Michael Buono, Jacob Immerman, Chih Yuan Lu, James Edward Morrison, Jr., Santona Pal, Ananthanarayanan Subramanian, Chu Yu Yeh
  • Patent number: 11037902
    Abstract: A light-emitting apparatus includes a substrate, pads disposed on the substrate, a sacrificial pattern layer and a light-emitting diode element disposed on the sacrificial pattern layer. The light-emitting diode element includes a first type semiconductor layer, a second type semiconductor layer, an active layer, and electrodes. A connection patterns disposed on at least one of the electrodes and the pads. Materials of the connection patterns include hot fluidity conductive materials. The connection patterns cover a sidewall of the sacrificial pattern layer and are electrically connected to the at least one of the electrodes and the pads. In addition, the manufacturing method of the above light-emitting apparatus is also proposed.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 15, 2021
    Assignee: Au Optronics Corporation
    Inventors: Tsung-Tien Wu, Chin-Yuan Ho, Chu-Yu Liu
  • Publication number: 20210175202
    Abstract: A light-emitting apparatus includes a substrate, pads disposed on the substrate, a sacrificial pattern layer and a light-emitting diode element disposed on the sacrificial pattern layer. The light-emitting diode element includes a first type semiconductor layer, a second type semiconductor layer, an active layer, and electrodes. A connection patterns disposed on at least one of the electrodes and the pads. Materials of the connection patterns include hot fluidity conductive materials. The connection patterns cover an outermost sidewall of the sacrificial pattern layer and are electrically connected to the at least one of the electrodes and the pads. The sacrificial pattern layer is located between the connection patterns, and the sacrificial pattern layer is overlapped with the pads in a normal direction of the substrate.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 10, 2021
    Applicant: Au Optronics Corporation
    Inventors: Tsung-Tien Wu, Chin-Yuan Ho, Chu-Yu Liu
  • Publication number: 20200219839
    Abstract: A light-emitting apparatus includes a substrate, pads disposed on the substrate, a sacrificial pattern layer and a light-emitting diode element disposed on the sacrificial pattern layer. The light-emitting diode element includes a first type semiconductor layer, a second type semiconductor layer, an active layer, and electrodes. A connection patterns disposed on at least one of the electrodes and the pads. Materials of the connection patterns include hot fluidity conductive materials. The connection patterns cover a sidewall of the sacrificial pattern layer and are electrically connected to the at least one of the electrodes and the pads. In addition, the manufacturing method of the above light-emitting apparatus is also proposed.
    Type: Application
    Filed: July 22, 2019
    Publication date: July 9, 2020
    Applicant: Au Optronics Corporation
    Inventors: Tsung-Tien Wu, Chin-Yuan Ho, Chu-Yu Liu
  • Publication number: 20200057470
    Abstract: A screen protector comprises a glass-based substrate and an adhesive. The glass-based substrate comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface comprises a first planar portion and a peripheral portion extending outwardly from the first planar portion. The second major surface comprises a second planar portion opposite the first planar portion and is parallel to the first planar portion. The edge comprises an outer peripheral surface that intersects the peripheral portion of the first major surface. The adhesive comprises a first major surface, a second major surface, a thickness, and an edge. The first major surface of the adhesive is adhered to the second major surface of the glass-based substrate.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 20, 2020
    Inventors: Sean Michael Buono, Jacob Immerman, Chih Yuan Lu, James Edward Morrison, JR., Santona Pal, Ananthanarayanan Subramanian, Chu Yu Yeh
  • Patent number: 10513649
    Abstract: A reverse emulsion-based slick water concentration system, wherein the reverse emulsion is obtained by dispersing an aqueous phase A to an oil phase B under mechanical agitation; wherein the aqueous phase A is composed of a water-soluble monomer A1, a water-soluble fluorocarbon surfactant A2, a water-soluble quaternary ammonium clay stabilizer A3 and water A4; wherein the oil phase B comprises an oil-soluble dispersant/surfactant B1, an oil-soluble radical initiator B2 and a hydrophobic solvent B3 as a dispersing medium; wherein, the percentages of each component described above, relative to the total weight of the reaction system is as the following: water-soluble monomer A1: 5.0-30.0%; water-soluble fluorocarbon surfactant A2: 0.1-5.0%; water-soluble quaternary ammonium clay stabilizer A3: 0.1-15.0%; water A4: 5.0-35.0%; oil-soluble dispersant/surfactant B1: 0.1-5.0%; oil-soluble radical initiator B2: 0.000001-0.100%; hydrophobic solvent B3: remainder.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: December 24, 2019
    Assignee: YANGTZE UNIVERSITY
    Inventors: Jun Wu, Wei-Chu Yu
  • Patent number: 10323177
    Abstract: A combo hydraulic fracturing fluid concentrate, is characterized by 1) firstly preparing “water-in-water” dispersion polymer drag reducer A, which is synthesized via dispersion polymerization to obtain water-soluble macromolecular colloidal particles dispersed in an aqueous solution of inorganic salts; 2) secondly, adding a dispersion B, which is a polymeric viscosifier, having shear-thinning properties, dispersed in aqueous inorganic salt solution; wherein the percentage by weight of drag reducing agent to viscosifier dispersion B is 20-80:80-20.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: June 18, 2019
    Assignee: YANGTZE UNIVERSITY
    Inventors: Jun Wu, Wei-Chu Yu
  • Patent number: 10271821
    Abstract: A method of ultrasound imaging and a corresponding ultrasound scanner are provided. The method includes the steps of receiving an echo signal induced by an ultrasonic plane wave transmission from a transducer of an ultrasound scanner, resampling the echo signal in time domain and/or space domain, performing a spectrum zooming on a band of interest (BOI) of an input signal, performing a Fourier transform on a result of the spectrum zooming, and generating an ultrasound image based on a result of the Fourier transform. The input signal is generated based on the resampling of the echo signal.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 30, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Lien Ho, Yi-Ting Wang, Ren-Jr Chen, Chu-Yu Huang
  • Patent number: 10125802
    Abstract: A bearing cable structure while fabricating panel comprises a steel cable and two sets of fixing members. Each connection section of the steel cable is assembled to the corresponding antiskid ring and then assembled into the axial blind hole of each fixing member and further riveted to the screwing section of each fixing member by machine so that the fixing members are tightly connected to the outer layer of the steel cable and the steel cable and the fixing members are integrated with each other for preventing from falling off, and simultaneously the riveting of the axial blind hole may engage with the outer layer to perform double location so as to strengthen an axial pull strength of the bearing cable structure and increase service life.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: November 13, 2018
    Inventors: Chu-Yu Lin, Yen-Chen Lin
  • Patent number: 10081752
    Abstract: A multifunctional slick water concentrate, is obtained by “W/W” dispersion polymerization at elevated temperature, wherein water-soluble monomer A1, water-soluble fluorocarbon surfactant A2, water-soluble quaternary ammonium clay stabilizer A3, water-soluble dispersant A4, water-soluble free radical initiator A5, inorganic salt A6 and water A7, is first formed a homogeneous system under mechanical agitation; wherein, the percentage of the weight of each respective component, relative to the total weight of the reaction system, is as the following: water-soluble monomer A1: 5.0-20.0%; water-soluble fluorocarbon surfactant agent A2: 0.1-5.0%; water-soluble quaternary ammonium clay stabilizer A3: 0.1-20.0%; water-soluble dispersant A4: 0.1-10.0%; water-soluble radical initiator A5: 0.000001-0.100%; inorganic salt A6: 15.0-40.0%; water A7: remainder.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 25, 2018
    Assignee: YANGTZE UNIVERSITY
    Inventors: Jun Wu, Wei-Chu Yu
  • Patent number: 10081753
    Abstract: An oil-phase-free triple-play slick water concentration system, is characterized by first synthesizing a water-soluble dispersion polymer drag reducer A; and then preparing an inorganic salt solution B, under mechanical agitation, of high-performance water-soluble fluorocarbon surfactant and a water-soluble of high-performance small molecule or macromolecule clay stabilizer containing quaternary ammonium ions; and finally, the aqueous inorganic salt solution B is slowly added to the drag reducer dispersion A, wherein the ratio of the aqueous inorganic salt solution B and the dispersion A is 20-80:80-20.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 25, 2018
    Assignee: YANGTZE UNIVERSITY
    Inventors: Jun Wu, Wei-Chu Yu
  • Publication number: 20180252247
    Abstract: A bearing cable structure while fabricating panel comprises a steel cable and two sets of fixing members. Each connection section of the steel cable is assembled to the corresponding antiskid ring and then assembled into the axial blind hole of each fixing member and further riveted to the screwing section of each fixing member by machine so that the fixing members are tightly connected to the outer layer of the steel cable and the steel cable and the fixing members are integrated with each other for preventing from falling off, and simultaneously the riveting of the axial blind hole may engage with the outer layer to perform double location so as to strengthen an axial pull strength of the bearing cable structure and increase service life.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 6, 2018
    Inventors: CHU-YU LIN, YEN-CHEN LIN
  • Publication number: 20180112117
    Abstract: A multifunctional slick water concentrate, is obtained by “W/W” dispersion polymerization at elevated temperature, wherein water-soluble monomer A1, water-soluble fluorocarbon surfactant A2, water-soluble quaternary ammonium clay stabilizer A3, water-soluble dispersant A4, water-soluble free radical initiator A5, inorganic salt A6 and water A7, is first formed a homogeneous system under mechanical agitation; wherein, the percentage of the weight of each respective component, relative to the total weight of the reaction system, is as the following: water-soluble monomer A1: 5.0-20.0%; water-soluble fluorocarbon surfactant agent A2: 0.1-5.0%; water-soluble quaternary ammonium clay stabilizer A3: 0.1-20.0%; water-soluble dispersant A4: 0.1-10.0%; water-soluble radical initiator A5: 0.000001-0.100%; inorganic salt A6: 15.0-40.0%; water A7: remainder.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Jun Wu, Wei-Chu Yu
  • Publication number: 20180112125
    Abstract: A combo hydraulic fracturing fluid concentrate, is characterized by 1) firstly preparing “water-in-water” dispersion polymer drag reducer A, which is synthesized via dispersion polymerization to obtain water-soluble macromolecular colloidal particles dispersed in an aqueous solution of inorganic salts; 2) secondly, adding a dispersion B, which is a polymeric viscosifier, having shear-thinning properties, dispersed in aqueous inorganic salt solution; wherein the percentage by weight of drag reducing agent to viscosifier dispersion B is 20-80:80-20.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Jun Wu, Wei-Chu Yu
  • Publication number: 20180112119
    Abstract: A reverse emulsion-based slick water concentration system, wherein the reverse emulsion is obtained by dispersing an aqueous phase A to an oil phase B under mechanical agitation; wherein the aqueous phase A is composed of a water-soluble monomer A1, a water-soluble fluorocarbon surfactant A2, a water-soluble quaternary ammonium clay stabilizer A3 and water A4; wherein the oil phase B comprises an oil-soluble dispersant/surfactant Bi, an oil-soluble radical initiator B2 and a hydrophobic solvent B3 as a dispersing medium; wherein, the percentages of each component described above, relative to the total weight of the reaction system is as the following: water-soluble monomer A1: 5.0-30.0%; water-soluble fluorocarbon surfactant A2: 0.1-5.0%; water-soluble quaternary ammonium clay stabilizer A3: 0.1-15.0%; water A4: 5.0-35.0%; oil-soluble dispersant/surfactant B1: 0.1-5.0%; oil-soluble radical initiator B2: 0.000001-0.100%; hydrophobic solvent B3: remainder.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Jun Wu, Wei-Chu Yu
  • Publication number: 20180112118
    Abstract: An oil-phase-free triple-play slick water concentration system, is characterized by first synthesizing a water-soluble dispersion polymer drag reducer A; and then preparing an inorganic salt solution B, under mechanical agitation, of high-performance water-soluble fluorocarbon surfactant and a water-soluble of high-performance small molecule or macromolecule clay stabilizer containing quaternary ammonium ions; and finally, the aqueous inorganic salt solution B is slowly added to the drag reducer dispersion A, wherein the ratio of the aqueous inorganic salt solution B and the dispersion A is 20-80:80-20.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: Jun Wu, Wei-Chu Yu
  • Patent number: 9864059
    Abstract: According to an exemplary embodiment, an ultrasound apparatus for beamforming with a plane wave transmission may comprise a transceiver connected to a transducer array having at least one transducer element, and at least one processor. The transceiver transmits at least one substantially planar ultrasonic wave into a target region at one or more angles relative to the transducer array, and receives one or more signals responsive from the transducer array. The at least one processor applies a fast Fourier transform (FFT) to the one or more signals from each of the at least one transducer element and calculates at least one frequency within a frequency region, and applies an inverse FFT to at least one produced frequency data.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: January 9, 2018
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chu-Yu Huang, Chir-Weei Chang, Kuo-Tung Tiao, Wen-Hung Cheng, Hsin-Yueh Sung, Ren-Jr Chen, Chung-Lien Ho, Yi-Ting Wang
  • Patent number: D816086
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 24, 2018
    Assignee: Acer Incorporated
    Inventors: Chu-Yu Chen, Ting-Wei Yuan, Chun-Chieh Chiu