Patents by Inventor Chua-Chin Wang

Chua-Chin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8212590
    Abstract: A mixed-voltage I/O buffer includes an input buffer circuit. The input buffer circuit includes a first inverter, a first voltage level limiting circuit, a first voltage level pull-up circuit, an input stage circuit, and a logic calibration circuit. The first inverter inverts an input signal to generate a first control signal. The first voltage level limiting circuit limits voltage level of an external signal to generate the input signal transmitted to the first inverter to prevent electrical overstress of the first inverter. The first voltage level pull-up circuit is controlled by the first control signal to pull up voltage level of the input signal inputted into the first inverter. The input stage circuit receives the first control signal to generate corresponding digital signals inputted into a core circuit. The logic calibration circuit calibrates voltage level of the first control signal when the first inverter mis-operates due to the input signal having a low voltage level.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: July 3, 2012
    Assignees: Himax Technologies Limited, National Sun Yat-Sen University
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang
  • Patent number: 8193837
    Abstract: A corner detector comprises a PMOS threshold voltage detector and an NMOS threshold voltage detector, the PMOS threshold voltage detector is composed of a first clock terminal, a first CMOS inverter, a first capacitor, a PMOS threshold voltage function generator and a first voltage output terminal, wherein the PMOS threshold voltage function generator is electrically connected to the first capacitor and applied to generate a first formula of voltage signal as a function of threshold voltage, the NMOS threshold voltage detector is composed of a second clock terminal, a second CMOS inverter, a second capacitor, an NMOS threshold voltage function generator and a second voltage output terminal, wherein the NMOS threshold voltage function generator is electrically connected to the second capacitor and applied to generate a second formula of voltage signal as a function of threshold voltage.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 5, 2012
    Assignee: National Sun Yat-Sen University
    Inventors: Chua-Chin Wang, Ron-Chi Kuo, Jen-Wei Liu, Ming-Dou Ker
  • Publication number: 20110298498
    Abstract: A corner detector comprises a PMOS threshold voltage detector and an NMOS threshold voltage detector, the PMOS threshold voltage detector is composed of a first clock terminal, a first CMOS inverter, a first capacitor, a PMOS threshold voltage function generator and a first voltage output terminal, wherein the PMOS threshold voltage function generator is electrically connected to the first capacitor and applied to generate a first formula of voltage signal as a function of threshold voltage, the NMOS threshold voltage detector is composed of a second clock terminal, a second CMOS inverter, a second capacitor, an NMOS threshold voltage function generator and a second voltage output terminal, wherein the NMOS threshold voltage function generator is electrically connected to the second capacitor and applied to generate a second formula of voltage signal as a function of threshold voltage.
    Type: Application
    Filed: July 28, 2010
    Publication date: December 8, 2011
    Inventors: Chua-Chin WANG, Ron-Chi KUO, Jen-Wei LIU, Ming-Dou KER
  • Publication number: 20110291742
    Abstract: An output buffer with process and temperature compensation comprises an enable terminal, a clock generator, a PMOS threshold voltage detector, an NMOS threshold voltage detector, a first comparator, a second comparator, a first compensation code generator, a second compensation code generator and an output buffer stage, wherein the output buffer stage has an output stage, the output buffer stage means for controlling a drive current generated by the output stage, wherein the output stage has a first voltage output terminal, and the modulated drive current is capable of compensating slew rate of the first voltage output terminal.
    Type: Application
    Filed: July 28, 2010
    Publication date: December 1, 2011
    Inventors: Chua-Chin WANG, Ron-Chi Kuo, Jen-Wei Liu, Ming-Dou Ker
  • Publication number: 20110241752
    Abstract: A mixed-voltage I/O buffer includes an input buffer circuit. The input buffer circuit includes a first inverter, a first voltage level limiting circuit, a first voltage level pull-up circuit, an input stage circuit, and a logic calibration circuit. The first inverter inverts an input signal to generate a first control signal. The first voltage level limiting circuit limits voltage level of an external signal to generate the input signal transmitted to the first inverter to prevent electrical overstress of the first inverter. The first voltage level pull-up circuit is controlled by the first control signal to pull up voltage level of the input signal inputted into the first inverter. The input stage circuit receives the first control signal to generate corresponding digital signals inputted into a core circuit. The logic calibration circuit calibrates voltage level of the first control signal when the first inverter mis-operates due to the input signal having a low voltage level.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 6, 2011
    Applicants: HIMAX TECHNOLOGIES LIMITED, NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang
  • Patent number: 7986171
    Abstract: A mixed-voltage input/output (I/O) buffer includes an output buffer circuit. The output buffer circuit includes an output stage circuit, a gate-tracking circuit and a floating N-well circuit. The output stage circuit includes stacked pull-up P-type transistors and stacked pull-down N-type transistors, in which a first P-type transistor of the stacked pull-up P-type transistors and a first N-type transistor of the stacked pull-down N-type transistors are coupled to an I/O pad. The gate-tracking circuit controls gate voltage of the first P-type transistor in accordance with a voltage of the I/O pad to prevent leakage current. The floating N-well circuit provides N-well voltages for an N-well of the first P-type transistor and an N-well of a second P-type transistor, controlling gate voltage of the first P-type transistor, of the gate-tracking circuit to prevent leakage current.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: July 26, 2011
    Assignees: Himax Technologies Limited, National Sun Yat-Sen University
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang
  • Publication number: 20110127971
    Abstract: A charging circuit integrated into a chip, comprising a charging unit, a switch unit, a biasing unit, a voltage-dividing unit, and a comparing unit. The charging unit is connected between a power supply input and a load for outputting a constant current based on a constant bias voltage supplied by the power supply input in order to charge the load. The switch unit is connected between the charging unit and the power supply input for turning on or cutting off the charging unit. The voltage-dividing unit generates a first signal to the comparing unit according to a voltage of the load. The biasing unit outputs a second signal having a constant voltage to the comparing unit. The comparing unit compares the first signal with the second signal for cutting off or turning on the switch unit, bringing the charging unit to charge or stop charging the load, respectively.
    Type: Application
    Filed: March 19, 2010
    Publication date: June 2, 2011
    Applicant: ACER INCORPORATED
    Inventors: CHUA-CHIN WANG, SHAO-FU YEN, JR-SHANG SHIE
  • Patent number: 7932748
    Abstract: A 2×VDD-tolerant input/output (I/O) buffer circuit with process, voltage, and temperature (PVT) compensation suitable for CMOS technology is disclosed. A 2×VDD-tolerant I/O buffer with a PVT compensation circuit is implemented with novel 2×VDD-tolerant logic gates. Output slew rate variations can be kept within smaller ranges to match maximum and minimum timing specifications. A 2×VDD tolerant logic circuit for implementing the I/O buffer is also disclosed.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: April 26, 2011
    Assignee: National Sun Yat-Sen University
    Inventors: Ming-Dou Ker, Yan-Liang Lin, Chua-Chin Wang
  • Patent number: 7915914
    Abstract: A 2×VDD-tolerant input/output (I/O) buffer circuit with process, voltage, and temperature (PVT) compensation suitable for CMOS technology is disclosed. A 2×VDD-tolerant I/O buffer with a PVT compensation circuit is implemented with novel 2×VDD-tolerant logic gates. Output slew rate variations can be kept within smaller ranges to match maximum and minimum timing specifications. A 2×VDD tolerant logic circuit for implementing the I/O buffer is also disclosed.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: March 29, 2011
    Assignee: National Sun Yat-Sen University
    Inventors: Ming-Dou Ker, Yan-Liang Lin, Chua-Chin Wang
  • Publication number: 20110062922
    Abstract: The present invention relates to a low dropout regulator, and more particularly to a low dropout regulator without load capacitor and ESR (equivalent series resistance) designed in response to the discharge curve of a Li-ion battery, includes an input terminal, a reference circuit, a power transfer element, a level regulating device, a regulating circuit, and a first N-type MOSFET. The regulating circuit detects a load change at an output terminal, amplifies the load change, and couples it to the level regulating device. The level regulating device receives and boosts a received signal and transmits the received signal to the power transfer element, so as to achieve the effect of controlling the power of a power supply.
    Type: Application
    Filed: January 12, 2010
    Publication date: March 17, 2011
    Applicant: ACER INCORPORATED
    Inventors: Chua-Chin Wang, Shao-Fu Yen
  • Publication number: 20110026175
    Abstract: The invention relates to an electrostatic discharge protecting circuit with ultra-low standby leakage current for twice supply voltage tolerance. The electrostatic discharge protecting circuit of the invention includes a substrate driver, a third transistor, a start-up circuit, a RC circuit and a second resistor. The substrate driver has a first transistor and a second transistor in serious connection. The start-up circuit has a fourth transistor and a fifth transistor with diode-connected. The RC circuit has a first resistor, a sixth transistor and a seventh transistor in serious connection. Compared with the prior art, the electrostatic discharge protecting circuit with ultra-low standby leakage current for twice supply voltage tolerance of the invention with advantages of low standby leakage current, high ESD robustness, and no gate-oxide reliability issue is an excellent circuit solution for on-chip ESD protection design for mixed-voltage I/O buffers in nanometer CMOS technologies.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 3, 2011
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Ming-Dou Ker, Chang-Tzu Wang, Chua-Chin Wang
  • Patent number: 7868659
    Abstract: The invention relates to an I/O buffer with twice the supply voltage tolerance using normal supply voltage devices. The I/O buffer of the invention includes a driver, a first level converter, a gate-controlled circuit and a dynamic source output stage. Signals of the I/O buffer are classified into a first voltage range and a second voltage range. The first voltage range is zero to the normal supply voltage, and the second voltage range is the normal supply voltage to twice the supply voltage. Therefore, the voltage between any two terminals of any of the transistors in the I/O buffer does not exceed the normal supply voltage so that the I/O buffer of the invention can transmit and receive signals with a voltage swing twice as high as the normal power supply voltage using normal supply voltage devices and without gate-oxide reliability problems.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: January 11, 2011
    Assignee: National Sun Yat-Sen University
    Inventors: Ming-Dou Ker, Yan-Liang Lin, Chua-Chin Wang
  • Patent number: 7839174
    Abstract: An output buffer circuit includes a high voltage detecting circuit, a dynamic gate bias generating circuit, an output stage circuit and a pad voltage detector. The high voltage detecting circuit detects a power supply voltage and generates a first and a second determining signals and a first and a second bias voltages according to the power supply voltage. The dynamic gate bias generating circuit is biased by the first and the second bias voltages and receives the first and the second determining signals, for converting logic control signals into corresponding gate bias voltages according to the first and the second determining signals. The pad voltage detector detects a voltage of an I/O pad and provides a pad voltage detecting signal for the output stage circuit to modify an output signal outputted to an I/O pad. A mixed-voltage input/output (I/O) buffer is disclosed herein.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 23, 2010
    Assignees: Himax Technologies Limited, National Sun Yat-Sen University
    Inventors: Chua-Chin Wang, Tzung-Je Lee, Yi-Cheng Liu, Kuo-Chan Huang
  • Publication number: 20100277216
    Abstract: An output buffer circuit is provided. The output buffer circuit receives a control signal (OE) and a data signal (Dout) from a first core circuit (10) and operates in a transmitting mode according to the control signal. The output buffer circuit converts the data signal into an output signal at a first voltage level or a ground voltage level according to the data signal logic level and a supply voltage (VDDIO). The supply voltage is adjusted to pull up or pull down the first voltage level of the output signal.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 4, 2010
    Applicants: NATIONAL SUN YAT-SEN UNIVERSITY, HIMAX TECHNOLOGIES LIMITED
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang, Tie-Yan Chang
  • Patent number: 7812638
    Abstract: An input output device coupled between a core circuit and a pad and including an output cell, an input cell, and a pre-driver. The output cell includes an output stage and a voltage level converter. The output stage includes a first transistor and a second transistor connected to the first transistor in serial between a first supply voltage and a second voltage. The voltage level converter generates a first gate voltage to the first transistor according to the first voltage and a data signal. When the first supply voltage is increased, the first gate voltage is increased. When the data signal is at a high level, the first transistor is turned on. The input cell includes a pull unit and a first N-type transistor. The pre-driver turns off the first and the second transistors.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 12, 2010
    Assignees: National Sun Yat-Sen University, Himax Technologies Limited
    Inventors: Chua-Chin Wang, Tzung-Je Lee, Kuo-Chan Huang, Tie-Yan Chang
  • Publication number: 20100253392
    Abstract: The invention relates to an I/O buffer with twice the supply voltage tolerance using normal supply voltage devices. The I/O buffer of the invention includes a driver, a first level converter, a gate-controlled circuit and a dynamic source output stage. Signals of the I/O buffer are classified into a first voltage range and a second voltage range. The first voltage range is zero to the normal supply voltage, and the second voltage range is the normal supply voltage to twice the supply voltage. Therefore, the voltage between any two terminals of any of the transistors in the I/O buffer does not exceed the normal supply voltage so that the I/O buffer of the invention can transmit and receive signals with a voltage swing twice as high as the normal power supply voltage using normal supply voltage devices and without gate-oxide reliability problems.
    Type: Application
    Filed: October 8, 2009
    Publication date: October 7, 2010
    Inventors: Ming-Dou KER, Yan-Liang Lin, Chua-Chin Wang
  • Patent number: 7786760
    Abstract: An output buffer circuit is provided. The output buffer circuit receives a control signal (OE) and a data signal (Dout) from a first core circuit (10) and operates in a transmitting mode according to the control signal. The output buffer circuit converts the data signal into an output signal at a first voltage level or a ground voltage level according to the data signal logic level and a supply voltage (VDDIO). The supply voltage is adjusted to pull up or pull down the first voltage level of the output signal.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 31, 2010
    Assignees: National Sun Yat-Sen University, Himax Technologies Limited
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang, Tie-Yan Chang
  • Publication number: 20100168828
    Abstract: The invention relates to an implantable biomedical chip with modulator for a wireless neural stimulating system. The implantable biomedical chip comprises a power regulator, a demodulator, a baseband circuit, a D/A converter, an instrumentation amplifier, an A/D converter and a modulator. According to the invention, the modulator is mounted on the implantable biomedical chip, and can achieve full-duplex communication to improve the controllability and observability. Besides, the power consumption and area occupation is reduced as compared with using discrete components. Therefore, the integration of the implantable biomedical chip can be easily accomplished.
    Type: Application
    Filed: October 20, 2009
    Publication date: July 1, 2010
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chua-Chin Wang, Tzung-Je Lee
  • Publication number: 20100141324
    Abstract: An output buffer circuit includes a high voltage detecting circuit, a dynamic gate bias generating circuit, an output stage circuit and a pad voltage detector. The high voltage detecting circuit detects a power supply voltage and generates a first and a second determining signals and a first and a second bias voltages according to the power supply voltage. The dynamic gate bias generating circuit is biased by the first and the second bias voltages and receives the first and the second determining signals, for converting logic control signals into corresponding gate bias voltages according to the first and the second determining signals. The pad voltage detector detects a voltage of an I/O pad and provides a pad voltage detecting signal for the output stage circuit to modify an output signal outputted to an I/O pad. A mixed-voltage input/output (I/O) buffer is disclosed herein.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Applicants: HIMAX TECHNOLOGIES LIMITED, NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chua-Chin Wang, Tzung-Je Lee, Yi-Cheng Liu, Kuo-Chan Huang
  • Publication number: 20100097117
    Abstract: A mixed-voltage input/output (I/O) buffer includes an output buffer circuit. The output buffer circuit includes an output stage circuit, a gate-tracking circuit and a floating N-well circuit. The output stage circuit includes stacked pull-up P-type transistors and stacked pull-down N-type transistors, in which a first P-type transistor of the stacked pull-up P-type transistors and a first N-type transistor of the stacked pull-down N-type transistors are coupled to an I/O pad. The gate-tracking circuit controls gate voltage of the first P-type transistor in accordance with a voltage of the I/O pad to prevent leakage current. The floating N-well circuit provides N-well voltages for an N-well of the first P-type transistor and an N-well of a second P-type transistor, controlling gate voltage of the first P-type transistor, of the gate-tracking circuit to prevent leakage current.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 22, 2010
    Applicants: HIMAX TECHNOLOGIES LIMITED, NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Chua-Chin Wang, Wei-Chih Chang, Tzung-Je Lee, Kuo-Chan Huang