Patents by Inventor Chua Swee Kwang

Chua Swee Kwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100068851
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 18, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7679179
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 16, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7675169
    Abstract: Methods for forming an edge contact on a die and edge contact structures are described. The edge contacts on the die do not increase the height of the die. The edge contacts are positioned on the periphery of a die. The edge contacts are positioned in the saw streets. Each edge contact is connected to one bond pad of each die adjacent the saw street. The edge contact is divided into contacts for each adjacent die when the dies are separated. In an embodiment, a recess is formed in the saw street. In an embodiment, the recess is formed by scribing the saw street with a mechanical cutter. The recess is patterned and contact material is deposited to form the edge contacts.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: March 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Slu Waf, Chan Min Yu, Neo Yong Loo, Eng Meow Koon, Ser Bok Leng, Chua Swee Kwang, So Chee Chung, Hu Kwok Seng
  • Patent number: 7528477
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Publication number: 20090057843
    Abstract: Semiconductor devices and assemblies including interconnects and methods for forming such interconnects are disclosed herein. One embodiment of a method of manufacturing a semiconductor device includes forming a plurality of first side trenches to an intermediate depth in a molded portion of a molded wafer having a plurality of dies arranged in rows and columns. The method also includes removing material from a second side of the molded portion at areas aligned with the first side trenches, wherein removing the material forms openings through the molded portion. The method further includes forming a plurality of electrical contacts at the second side of the molded portion at the openings and electrically connecting the second side contacts to corresponding bond-sites on the dies.
    Type: Application
    Filed: November 1, 2007
    Publication date: March 5, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Chua Swee Kwang, Boon Suan Jeung, Chia Yong Poo
  • Publication number: 20090026592
    Abstract: Semiconductor dies with recesses, associated leadframes, and associated systems and methods are disclosed. A semiconductor system in accordance with one embodiment includes a semiconductor die having a first surface and a second surface facing opposite from the first surface, with the first surface having a die recess. The system can further include a support paddle carrying the semiconductor die, with at least part of the support paddle being received in the die recess. In particular embodiments, the support paddle can form a portion of a leadframe. In other particular embodiments, the support paddle can include a paddle surface that faces toward the semiconductor die and has an opening extending through the paddle surface and through the support paddle.
    Type: Application
    Filed: September 25, 2007
    Publication date: January 29, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Chua Swee Kwang, Chia Yong Poo
  • Publication number: 20090026593
    Abstract: Thin semiconductor die packages and associated systems and methods are disclosed. A package in accordance with a particular embodiment includes a semiconductor die having die bond sites, a conductive structure positioned proximate to the semiconductor die and having first bond sites and second bond sites spaced apart from the first bond sites, and conductive couplers connected between the first bond sites of the conductive structure and the die bond sites of the semiconductor die. A cover can be positioned adjacent to the semiconductor die, and can include a recess in which the conductive couplers are received.
    Type: Application
    Filed: September 25, 2007
    Publication date: January 29, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Chua Swee Kwang
  • Publication number: 20080284003
    Abstract: A semiconductor package includes a substrate having contacts, and a discrete component on the substrate in electrical communication with the contacts. The package also includes a semiconductor die on the substrate in electrical communication with the contacts, and a die attach polymer attaching the die to the substrate. The die includes a recess, and the discrete component is contained in the recess encapsulated in the die attach polymer. A method for fabricating the package includes the steps of: attaching the discrete component to the substrate, placing the die attach polymer on the discrete component and the substrate, pressing the die into the die attach polymer to encapsulate the discrete component in the recess and attach the die to the substrate, and then placing the die in electrical communication with the discrete component. An electronic system includes the semiconductor package mounted to a system substrate.
    Type: Application
    Filed: June 25, 2007
    Publication date: November 20, 2008
    Inventors: Chua Swee Kwang, Chia Yong Poo
  • Patent number: 7358154
    Abstract: Methods for forming an edge contact on a die and edge contact structures are described. The edge contacts on the die do not increase the height of the die. The edge contacts are positioned on the periphery of a die. The edge contacts are positioned in the saw streets. Each edge contact is connected to one bond pad of each die adjacent the saw street. The edge contact is divided into contacts for each adjacent die when the dies are separated. In an embodiment, a recess is formed in the saw street. In an embodiment, the recess is formed by scribing the saw street with a mechanical cutter. The recess is patterned and contact material is deposited to form the edge contacts.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: April 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Eng Meow Koon, Ser Bok Leng, Chua Swee Kwang, So Chee Chung, Ho Kwok Seng
  • Patent number: 7285850
    Abstract: A support structure for a semiconductor device with peripherally disposed contacts includes a support substrate and at least one conductive column protruding from the support substrate. The at least one conductive column is configured to contact an outer connector on a peripheral edge of a semiconductor device that may be carried by the support structure. Optionally, the at least one conductive column may engage a feature of (e.g., a recess in) the peripherally disposed outer connector. The at least one conductive column may facilitate alignment of one or more semiconductor devices with the support substrate alignment of semiconductor devices relative to one another, or electrical connection between multiple semiconductor devices of other components.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: October 23, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Patent number: 7276387
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7226809
    Abstract: A multichip assembly includes semiconductor devices or semiconductor device components with outer connectors on peripheral edges thereof. The outer connectors are formed by creating via holes along boundary lines between adjacent, unsevered semiconductor devices, or semiconductor device components, then plating or filling the holes with conductive material. When adjacent semiconductor devices or semiconductor device components are severed from one another, the conductive material in each via between the semiconductor devices is bisected. The semiconductor devices and components of the multichip assembly may have different sizes, as well as arrays of outer connectors with differing diameters and pitches. Either or both ends of each outer connector may be electrically connected to another aligned outer connector or contact area of another semiconductor device or component. Assembly in this manner provides a low-profile stacked assembly.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: June 5, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Chua Swee Kwang, Low Siu Waf, Chan Min Yu, Neo Yong Loo
  • Patent number: 7115984
    Abstract: A semiconductor device package is disclosed which is substantially die-sized with respect to each of the X, Y and Z axes. The package includes outer connectors that are located along at least one peripheral edge thereof and that extend substantially across the height of the peripheral edge. Each outer connector is formed by severing a conductive via that extends substantially through a substrate blank, such as a silicon wafer, at a street located adjacent to an outer periphery of the semiconductor device of the package. The outer connectors may include recesses that at least partially receive conductive columns protruding from a support substrate therefor. Assemblies may include the packages in stacked arrangement, without height-adding connectors.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Patent number: 6949407
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 6894386
    Abstract: Methods for forming an edge contact on a die and edge contact structures are described. The edge contacts on the die do not increase the height of the die. The edge contacts are positioned on the periphery of a die. The edge contacts are positioned in the saw streets. Each edge contact is connected to one bond pad of each die adjacent the saw street. The edge contact is divided into contacts for each adjacent die when the dies are separated. In an embodiment, a recess is formed in the saw street. In an embodiment, the recess is formed by scribing the saw street with a mechanical cutter. The recess is patterned and contact material is deposited to form the edge contacts.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: May 17, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Eng Meow Koon, Ser Bok Leng, Chua Swee Kwang, So Chee Chung, Ho Kwok Seng
  • Patent number: 6855572
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: February 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 6818977
    Abstract: A multichip assembly includes semiconductor devices or semiconductor device components with outer connectors on peripheral edges thereof. The outer connectors are formed by creating via holes along boundary lines between adjacent, unsevered semiconductor devices, or semiconductor device components, then plating or filling the holes with conductive material. When adjacent semiconductor devices or semiconductor device components are severed from one another, the conductive material in each via between the semiconductor devices is bisected. The semiconductor devices and components of the multichip assembly may have different sizes, as well as arrays of outer connectors with differing diameters and pitches. Either or both ends of each outer connector may be electrically connected to another aligned outer connector or contact area of another semiconductor device or component. Assembly in this manner provides a low-profile stacked assembly.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: November 16, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Chua Swee Kwang, Low Siu Waf, Chan Min Yu, Neo Yong Loo
  • Publication number: 20040124523
    Abstract: A semiconductor device package is disclosed which is substantially die-sized with respect to each of the X, Y and Z axes. The package includes outer connectors that are located along at least one peripheral edge thereof and that extend substantially across the height of the peripheral edge. Each outer connector is formed by severing a conductive via that extends substantially through a substrate blank, such as a silicon wafer, at a street located adjacent to an outer periphery of the semiconductor device of the package. The outer connectors may include recesses that at least partially receive conductive columns protruding from a support substrate therefore. Assemblies may include the packages in stacked arrangement, without height-adding connectors.
    Type: Application
    Filed: December 15, 2003
    Publication date: July 1, 2004
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Patent number: 6727116
    Abstract: A semiconductor device package is disclosed which is substantially die-sized with respect to each of the X, Y and Z axes. The package includes outer connectors that are located along at least one peripheral edge thereof and that extend substantially across the height of the peripheral edge. Each outer connector is formed by severing a conductive via that extends substantially through a substrate blank, such as a silicon wafer, at a street located adjacent to an outer periphery of the semiconductor device of the package. The outer connectors may include recesses that at least partially receive conductive columns protruding from a support substrate therefor. Assemblies may include the packages in stacked arrangement, without height-adding connectors.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: April 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chia Yong Poo, Boon Suan Jeung, Low Siu Waf, Chan Min Yu, Neo Yong Loo, Chua Swee Kwang
  • Publication number: 20040043535
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Application
    Filed: August 28, 2002
    Publication date: March 4, 2004
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei