Patents by Inventor Chuansheng Bai

Chuansheng Bai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240001344
    Abstract: Processes for calcining a catalyst. The process can include subjecting a synthesized catalyst that includes Pt disposed on a support to an initial calcination that includes exposing the catalyst to a first reducing gas or a first oxidizing gas to produce an initial calcined catalyst. The process can optionally include subjecting the initial calcined. catalyst to a cycle calcination that includes exposing the initial calcined catalyst to a second reducing gas and a second oxidizing gas to produce a cycle calcined catalyst. The process can optionally include subjecting the initial or the cycle calcined catalyst to a final calcination that includes exposing the initial or the cycle calcined catalyst to a third reducing gas or a third oxidizing gas. At least one of the cycle and the final calcination can be carried out. A calcined catalyst can be obtained at the end of the cycle or the final calcination.
    Type: Application
    Filed: June 13, 2023
    Publication date: January 4, 2024
    Inventors: Xiaoying Bao, Chuansheng Bai
  • Patent number: 11850569
    Abstract: Compositions and methods of preparing the compositions are disclosed for sorbents and other surfaces that can adsorb and desorb carbon dioxide. A sorbent or surface can include a metal compound such as an alkali or alkaline earth compound and a support. The sorbent can be prepared by several methods, including an incipient wetness technique. The sorbents have a CO2 adsorption and desorption profile. A sorbent having high levels of a metal compound and adsorbed CO2 is disclosed.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: December 26, 2023
    Assignees: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY, TDA RESEARCH, INC.
    Inventors: Jeannine Elizabeth Elliott, Robert James Copeland, Margarita Dubovik, Daniel P. Leta, Patrick P. McCall, Chuansheng Bai, Bruce A. DeRites
  • Patent number: 11819818
    Abstract: A method of producing bifunctional catalysts by extrusion may include mixing an acid catalyst, a metal catalyst, optionally a binder, and a fluid to produce a dough; extruding the dough to form an extrudate; producing a powder from the extrudate; and calcining the powder to produce an acid/metal bifunctional catalyst. Such acid/metal bifunctional catalysts may be useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: November 21, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20230211328
    Abstract: Described herein are novel and inventive dewaxing processes that employ dewaxing catalysts which are co-extrusions of two different zeolites, particularly two different 10MR zeolites or a co-extrusion of a 10MR zeolite and a 12MR zeolite in combination with a hydrogenation component. The hydrogenation component can be a mixture of non-noble metal components or a mixture of noble metal components. This novel and inventive process demonstrated a significant activity boost (as measured by increased cloud point reduction) and/or selectivity boost (as measured by reduced diesel loss) compared to either single zeolite component.
    Type: Application
    Filed: May 12, 2021
    Publication date: July 6, 2023
    Inventors: Madelyn Stalzer, Joseph Gatt, Chuansheng Bai, Christopher Oliveri
  • Patent number: 11691139
    Abstract: A method of producing bifunctional catalyst systems that include a carbon-coated metal catalyst may comprise: coating a metal catalyst particle with a carbon-containing small molecule to produce a coated metal catalyst particle; carbonizing the carbon-containing small molecule on the coated metal catalyst particle to produce a carbon-coated metal catalyst particle; and mixing the carbon-coated metal catalyst particle with an acid catalyst particle to produce an acid/metal bifunctional catalyst system.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: July 4, 2023
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 11654421
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution; mixing the metal catalyst precursor solution and an alkali metal buffer solution to produce a precipitate; ion exchanging the alkali metal in the precipitate for a non-alkali cation to produce a low-alkali metal precipitate comprising 3 wt % or less alkali metal by weight of the precipitate on a dry basis; producing a powder from the low-alkali metal precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 23, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 11638912
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution having a pH of about 2.5 to about 4.0; mixing the metal catalyst precursor solution and a basic solution having a pH of about 10 to about 13 to produce a mixture with a pH of about 6 to about 7 and a precipitate; producing a powder from the precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 2, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan
  • Patent number: 11602734
    Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: March 14, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Dakka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20230021410
    Abstract: Catalyst compositions to perform selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatic hydrocarbon may exhibit a hydrogen chemisorption of at least 15% and comprise an oxide support material selected from the group consisting of an alkaline earth metal oxide, silica, a composite of an alkaline earth metal oxide and Al2O3, a composite of ZnO and Al2O3, a lanthanide oxide, a composite of a lanthanide oxide and Al2O3, and combinations and mixtures of two or more thereof; and a transition metal element dispersed upon the oxide support material. Alkyl-demethylation processes of a C6+ aromatic hydrocarbon-containing stream comprising C2+-hydrocarbyl-substituted aromatic hydrocarbons may comprise contacting the catalyst compositions in an alkyl-demethylation zone under alkyl-demethylation conditions to form an alkyl-demethylated aromatic hydrocarbon as an effluent exiting the alkyl-demethylation zone.
    Type: Application
    Filed: November 16, 2020
    Publication date: January 26, 2023
    Inventors: Umar Aslam, Meha Rungta, Chuansheng Bai, Ali A. Kheir, Paul Podsiadlo
  • Publication number: 20230023923
    Abstract: Disclosed are catalyst compositions comprising two or more metal elements with high performances for selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatics, processes for making such catalyst compositions, and alkyl-demethylation processes using same. Also disclosed are preferred processes for making alkyl-demethylation catalyst compositions including a high-temperature calcination step, and preferred alkyl-demethylation processes having a high H2/HC molar ratio.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 26, 2023
    Inventors: Chuansheng Bai, Ali A. Kheir, Eric D. Metzger, Christian A. Diaz Urrutia, Meha Rungta, Umar Aslam
  • Patent number: 11420182
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbent includes an aluminum oxide support and an alkali metal salt impregnated on the support, and a silicon modification of the sorbent to reduce water uptake by the sorbent and make it more hydrophobic. The silicon modification can be an organosilyl moiety added after the initial sorbent is complete, or a silica source added to the aluminum oxide structure, typically via impregnation. The sorbents demonstrate better H2O/CO2 ratios. Compositions and methods of making are disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 23, 2022
    Assignees: ExxonMobile Technology and Engineering Company, TDA Research, Inc. W
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Patent number: 11236027
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: February 1, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Patent number: 11198109
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes two alkali metal salts impregnated on the support. The two alkali metals include a potassium metal salts and a second alkali metal salt which is not potassium. The second metal salt disrupts poisoning effects that degrade sorbent lifetime. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 14, 2021
    Assignees: ExxonMobil Research and Engineering Company, TDA Research, Inc.
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20210268474
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes alkali metal salts within the support, in the form of pseudo alkali aluminate. The sorbents also include alkali metal salt impregnated on the support. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 2, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Publication number: 20210198165
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 1, 2021
    Inventors: Christine N. Elia, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Patent number: 11046897
    Abstract: Methods are provided for performing selective hydrodesulfurization on a naphtha boiling range stream naphtha boiling range portion of a feed. It has been unexpectedly discovered that hydrodesulfurization with improved octane retention can be performed by using a catalyst that comprises CoMo supported on a catalyst support that includes a zeotype framework. By using a catalyst support including a zeotype framework, an unexpectedly high amount of octane in the naphtha boiling range portion of the hydrodesulfurized effluent is maintained.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 29, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Majosefina Cunningham, Gregory R. Johnson, Wenyih F. Lai, Brandon J. O'Neill
  • Patent number: 10981845
    Abstract: Disclosed are processes for conversion of a feedstock comprising C8+ aromatic hydrocarbons to lighter aromatic products in which the feedstock and optionally hydrogen are contacted in the presence of the catalyst composition under conversion conditions effective to dealkylate and transalkylate said C8+ aromatic hydrocarbons to produce said lighter aromatic products comprising benzene, toluene and xylene. The catalyst composition comprises a zeolite, a first metal, and a second metal, and is treated with a source of sulfur and/or a source of steam.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 20, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Christine N. Elia, Wenyih F. Lai, Hari Nair, Joshua I. Cutler, Chuansheng Bai, Nicholas S. Rollman
  • Publication number: 20210046461
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution; mixing the metal catalyst precursor solution and an alkali metal buffer solution to produce a precipitate; ion exchanging the alkali metal in the precipitate for a non-alkali cation to produce a low-alkali metal precipitate comprising 3 wt % or less alkali metal by weight of the precipitate on a dry basis; producing a powder from the low-alkali metal precipitate; and calcining the powder to produce a metal catalyst.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20210046462
    Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Publication number: 20210046460
    Abstract: Methods of producing metal catalysts can include mixing two or more metal salts and an aluminum salt in water to produce a metal catalyst precursor solution having a pH of about 2.5 to about 4.0; mixing the metal catalyst precursor solution and a basic solution having a pH of about 10 to about 13 to produce a mixture with a pH of about 6 to about 7 and a precipitate; producing a powder from the precipitate; and calcining the powder to produce a metal catalyst. Such metal catalysts may be useful in producing bifunctional catalyst systems that are useful in, among other things, converting syngas to dimethyl ether in a single reactor.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan