Patents by Inventor Chul B. Park

Chul B. Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416493
    Abstract: Embodiments described herein relate generally to systems and methods for manufacturing a master batch with a graphitic material dispersed in a polymer matrix. In some embodiments, a method for manufacturing the master batch can include combining the graphitic material with a polymer, adding a supercritical fluid to the mixture, and depressurizing the supercritical fluid to remove the supercritical fluid. In some embodiments, the method includes mixing the graphitic material and the polymer for a first time period to form a first mixture and transferring the supercritical fluid to the first mixture to form a second mixture. In some embodiments, the method includes mixing the second mixture for a second time period and depressurizing the second mixture to allow the supercritical fluid to transition to a gas phase.
    Type: Application
    Filed: February 14, 2023
    Publication date: December 28, 2023
    Applicant: NanoXplore Inc.
    Inventors: Seyed Mahdi HAMIDINEJAD, Chul B. PARK, Soroush NAZARPOUR
  • Patent number: 11603448
    Abstract: Embodiments described herein relate generally to systems and methods for manufacturing a master batch with a graphitic material dispersed in a polymer matrix. In some embodiments, a method for manufacturing the master batch can include combining the graphitic material with a polymer, adding a supercritical fluid to the mixture, and depressurizing the supercritical fluid to remove the supercritical fluid. In some embodiments, the method includes mixing the graphitic material and the polymer for a first time period to form a first mixture and transferring the supercritical fluid to the first mixture to form a second mixture. In some embodiments, the method includes mixing the second mixture for a second time period and depressurizing the second mixture to allow the supercritical fluid to transition to a gas phase.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: March 14, 2023
    Assignee: NanoXplore Inc.
    Inventors: Seyed Mahdi Hamidinejad, Chul B. Park, Soroush Nazarpour
  • Publication number: 20210139667
    Abstract: Embodiments described herein relate generally to systems and methods for manufacturing a master batch with a graphitic material dispersed in a polymer matrix. In some embodiments, a method for manufacturing the master batch can include combining the graphitic material with a polymer, adding a supercritical fluid to the mixture, and depressurizing the supercritical fluid to remove the supercritical fluid. In some embodiments, the method includes mixing the graphitic material and the polymer for a first time period to form a first mixture and transferring the supercritical fluid to the first mixture to form a second mixture. In some embodiments, the method includes mixing the second mixture for a second time period and depressurizing the second mixture to allow the supercritical fluid to transition to a gas phase.
    Type: Application
    Filed: August 6, 2020
    Publication date: May 13, 2021
    Applicant: NanoXplore Inc.
    Inventors: Seyed Mahdi HAMIDINEJAD, Chul B. PARK, Soroush NAZARPOUR
  • Patent number: 10774195
    Abstract: Embodiments described herein relate generally to systems and methods for manufacturing a master batch with a graphitic material dispersed in a polymer matrix. In some embodiments, a method for manufacturing the master batch can include combining the graphitic material with a polymer, adding a supercritical fluid to the mixture, and depressurizing the supercritical fluid to remove the supercritical fluid. In some embodiments, the method includes mixing the graphitic material and the polymer for a first time period to form a first mixture and transferring the supercritical fluid to the first mixture to form a second mixture. In some embodiments, the method includes mixing the second mixture for a second time period and depressurizing the second mixture to allow the supercritical fluid to transition to a gas phase.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: September 15, 2020
    Assignee: NanoXplore Inc.
    Inventors: Seyed Mahdi Hamidinejad, Chul B. Park, Soroush Nazarpour
  • Publication number: 20200109250
    Abstract: Embodiments described herein relate generally to systems and methods for manufacturing a master batch with a graphitic material dispersed in a polymer matrix. In some embodiments, a method for manufacturing the master batch can include combining the graphitic material with a polymer, adding a supercritical fluid to the mixture, and depressurizing the supercritical fluid to remove the supercritical fluid. In some embodiments, the method includes mixing the graphitic material and the polymer for a first time period to form a first mixture and transferring the supercritical fluid to the first mixture to form a second mixture. In some embodiments, the method includes mixing the second mixture for a second time period and depressurizing the second mixture to allow the supercritical fluid to transition to a gas phase.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 9, 2020
    Applicant: NanoXplore Inc.
    Inventors: Seyed Mahdi HAMIDINEJAD, Chul B. PARK, Soroush NAZARPOUR
  • Publication number: 20190309134
    Abstract: The present invention relates to the manufacture of a new class of hybrid aerogels with a 3-D reticulated structure. First, the organic and inorganic components of the structure are distributed on a molecular level in such a way that all of the organic components of the precursor are chemically bonded to each other and to the inorganic component. Second, in the new hybrid aerogels, the pores are separated by solid walls like reticulated open-cell foams without the particulate solid parts and also the present invention is a process for preparing a hybrid aerogel without aging step having a nonparticulate-reticulated structure comprises of a polymeric precursor that is crosslinked by a linkage without forming particulate structure.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Sasan REZAEI, Chul B. PARK
  • Publication number: 20190210250
    Abstract: Disclosed herein is a method for producing isotropized “ready-to-use” polymer pellets or granules that contain completely or substantially relaxed matrix molecules and entangled organic nanofibrils with long aspect ratios that will provide superior properties for the products without high cost. These pellets are cost-effectively produced using industrial-scale fiber spinning or melt-blowing/spun-bond equipment followed by an isotropizing pelletizer. These pellets enable one to mass-produce the micro-fibrillar or nanofibrillar composites with superior mechanical properties, because they are readily usable (“ready-to-use”) for industry-scale mass production systems with a very high throughput over 1000 kg/hr. The organic nanofibrils are well dispersed and entangled in the polymer matrix and have a long aspect ratio ranging hundreds to thousands, to tens of thousands.
    Type: Application
    Filed: September 12, 2017
    Publication date: July 11, 2019
    Inventors: Chul B. PARK, Ali RIZVI, Adel Ramezani KAKROODI, Chongxiang ZHAO
  • Patent number: 10087300
    Abstract: The present invention relates to a method for the preparation of PLA beads, more particularly expanded PLA bead foams. In addition, the present invention relates to a method for the preparation of moldings by sintering PLA beads. The method comprises the following steps: A) providing unfoamed PLA pellets, B) heating said unfoamed PLA pellets to an annealing temperature and saturating with a blowing agent, C) maintaining said PLA pellets on the annealing temperature and saturating with said blowing agent, D) depressurizing and cooling the saturated PLA pellets of step C) to room temperature to form expanded PLA bead foams.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: October 2, 2018
    Assignee: Synbra Technology B.V.
    Inventors: Chul B. Park, Mohammadreza Nofar
  • Publication number: 20160039990
    Abstract: The present invention relates to a method for the preparation of PLA beads, more particularly expanded PLA bead foams. In addition, the present invention relates to a method for the preparation of moldings by sintering PLA beads. The method comprises the following steps: A) providing unfoamed PLA pellets, B) heating said unfoamed PLA pellets to an annealing temperature and saturating with a blowing agent, C) maintaining said PLA pellets on the annealing temperature and saturating with said blowing agent, D) depressurizing and cooling the saturated PLA pellets of step C) to room temperature to form expanded PLA bead foams.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 11, 2016
    Inventors: Chul B. Park, Mohammadreza NOFAR
  • Publication number: 20140271744
    Abstract: Provided is a process for forming a dissolvable fiber, the process including (a) producing an extrudate from a twin screw extruder; and (b) forming the extrudate into the dissolvable fiber. The dissolvable fiber includes (i) from about 10% to about 60% of one or more anionic surfactants; (ii) from about 10% to about 50% of one or more water soluble polymers; (iii) from about 1% to about 30% of one or more plasticizers; and (iv) from about 0.01% to about 30% water. The one or more anionic surfactants have a Krafft point of less than about 30° C. The dissolvable fiber has an average diameter of from about 20 microns to about 1,000 microns.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: The Procter & Gamble Company
    Inventors: Robert Wayne GLENN, JR., Todd Ryan THOMPSON, Ungyeong JUNG, Chul B. PARK, Changwei ZHU, Raymond Kar Man CHU
  • Publication number: 20140264994
    Abstract: Provided is a process for forming a personal care article comprising producing a personal care article from a twin screw extruder employing blowing agents, the personal care article including (i) from about 10% to about 60% of one or more anionic surfactants, wherein the one or more anionic surfactants have a Krafft point of less than about 30° C.; (ii) from about 10% to about 50% of one or more water soluble polymers; (iii) from about 1% to about 30% of one or more plasticizers; and (iv) from about 0.01% to about 40% water. The personal care article has a density of from about 0.05 g/cm3 to about 0.95 g/cm3.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: The Procter & Gamble Company
    Inventors: Robert Wayne GLENN, JR., Todd Ryan THOMPSON, Ungyeong JUNG, Chul B. PARK, Changwei ZHU
  • Publication number: 20140271745
    Abstract: Provided is a personal care article including one or more extruded dissolvable fibers. The extruded dissolvable fibers include (a) from about 10% to about 60% of one or more anionic surfactants; (b) from about 10% to about 50% of one or more water soluble polymers; (c) from about 1% to about 30% of one or more plasticizers; and (d) from about 0.01% to about 30% water. The one or more anionic surfactants have a Krafft point of less than about 30° C. The one or more extruded dissolvable fibers has an average diameter of from about 20 microns to about 1,000 microns. The personal care article has a dry density of from about 0.02 g/cm3 to about 0.30 g/cm3.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: The Procter & Gamble Company
    Inventors: Robert Wayne GLENN, JR., Todd Ryan THOMPSON, Ungyeong JUNG, Chul B. PARK, Changwei ZHU, Raymond Kar Man CHU
  • Publication number: 20100285296
    Abstract: An advanced structural foam molding technology for improving the dispersion of the blowing agent in the polymer matrix has been invented. This technological innovation is an improvement on the well-known existing low-pressure structural foam molding technology based on the preplasticating-type (so called piggy-bag) injection-molding machines. By introducing means for continuing the polymer matrix melt flow stream, preferably an additional accumulator and a gear pump, the processing conditions become more consistent to disperse the injected gas more uniformly in the polymer matrix. By using this technology, the structural foams have a smaller cell size, a more uniform cell structure, a larger void fraction (i.e., more material saving), less surface swirl, and less weld line contrast.
    Type: Application
    Filed: April 19, 2010
    Publication date: November 11, 2010
    Inventors: Chul B. Park, Xiang Xu
  • Patent number: 7033527
    Abstract: Disclosed herein are a highly porous ceramic having a high porosity of not less than 60% and a pore density of not less than 108 pores/cm3 fabricated from expandable microspheres and a preceramic polymer, and a method for fabricating highly porous ceramic. The method for fabricating highly porous ceramic from expandable microspheres and a preceramic polymer comprises the steps of: homogeneously mixing a preceramic polymer powder and expandable hollow microspheres, if necessary, a ceramic powder, and molding the mixture to form a molded body; heating the molded body to expand it; curing the expanded molded body; and pyrolyzing the cured molded body. Since the highly porous ceramic has a higher porosity and pore density than conventional porous ceramics, it can be suitably used for various high temperature structure materials, kiln furniture, bulletproof materials, shock-absorbing materials, insulating materials, refractory materials, lightweight structure materials, etc.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 25, 2006
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Young-Wook Kim, Hai-Doo Kim, Shin-Han Kim, Chul-B Park
  • Patent number: 6958365
    Abstract: The present invention relates to a method for making an open celled microcellular foam comprising providing at least one foamable polymer and a crosslinking agent in an extruder, injecting at least one blowing agent into said at least one foamable polymer and said crosslinking agent in said extruder, blending said blowing agent injected into said at least one foamable polymer and said crosslinking agent in said extruder, feeding said blended blowing agent, at least one foamable polymer and said crosslinking agent in said extruder to a die, and depressurizing said blended blowing agent, said at least one foamable polymer and said crosslinking agent.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: October 25, 2005
    Assignee: Eastman Kodak Company
    Inventors: Narasimharao Dontula, Jehuda Greener, Cathy A. Fleischer, Chul B. Park, Patrick C. Lee, Jin Wang, Hani E. Naguib
  • Patent number: 6936200
    Abstract: A process for producing plastic/wood fiber composite foamed structures includes the steps of pre-drying wood fiber filler; mixing it with plastic to form a mixture; feeding the mixture into an extruder; introducing and mixing a blowing agent; subject the mixture to high shear forces and extruding the mixture to produce a plastic/wood fiber composite foamed structure. The filler has a degradation temperature and an active volatization temperature. During the pre-drying step the temperature is maintained below the degradation temperature. During the mixing step the mixing temperature is maintained below the active volatilizing temperature. During the introducing and mixing step a blowing agent is introduced into the plastic/wood fiber mixture and is mixed therewith to produce a plastic/wood fiber/gas mixture. During the subjecting step the plastic/wood fiber/gas mixture is subjected to high shear forces in the presence of high pressures and the temperature is maintained below an active volatilizing temperature.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: August 30, 2005
    Inventors: Chul B. Park, Ghaus M. Rizvi, Haiou Zhang
  • Publication number: 20050012233
    Abstract: Disclosed herein are a highly porous ceramic having a high porosity of not less than 60% and a pore density of not less than 108 pores/cm3 fabricated from expandable microspheres and a preceramic polymer, and a method for fabricating highly porous ceramic. The method for fabricating highly porous ceramic from expandable microspheres and a preceramic polymer comprises the steps of: homogeneously mixing a preceramic polymer powder and expandable hollow microspheres, if necessary, a ceramic powder, and molding the mixture to form a molded body; heating the molded body to expand it; curing the expanded molded body; and pyrolyzing the cured molded body. Since the highly porous ceramic has a higher porosity and pore density than conventional porous ceramics, it can be suitably used for various high temperature structure materials, kiln furniture, bulletproof materials, shock-absorbing materials, insulating materials, refractory materials, lightweight structure materials, etc.
    Type: Application
    Filed: September 23, 2003
    Publication date: January 20, 2005
    Applicant: Korea Institute of Machinery and Materials
    Inventors: Young-Wook Kim, Hai-Doo Kim, Shin-Han Kim, Chul-B Park
  • Publication number: 20040229968
    Abstract: The present invention relates to a method for making an open celled microcellular foam comprising providing at least one foamable polymer and a crosslinking agent in an extruder, injecting at least one blowing agent into said at least one foamable polymer and said crosslinking agent in said extruder, blending said blowing agent injected into said at least one foamable polymer and said crosslinking agent in said extruder, feeding said blended blowing agent, at least one foamable polymer and said crosslinking agent in said extruder to a die, and depressurizing said blended blowing agent, said at least one foamable polymer and said crosslinking agent.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 18, 2004
    Inventors: Narasimharao Dontula, Jehuda Greener, Cathy A. Fleischer, Chul B. Park, Patrick C. Lee, Jin Wang, Hani E. Naguib
  • Publication number: 20020165289
    Abstract: A process for producing plastic/wood fiber composite foamed structures includes the steps of pre-drying wood fiber filler; mixing it with plastic to form a mixture; feeding the mixture into an extruder; introducing and mixing a blowing agent; subject the mixture to high shear forces and extruding the mixture to produce a plastic/wood fiber composite foamed structure. The filler has a degradation temperature and an active volatization temperature. During the pre-drying step the temperature is maintained below the degradation temperature. During the mixing step the mixing temperature is maintained below the active volatilizing temperature. During the introducing and mixing step a blowing agent is introduced into the plastic/wood fiber mixture and is mixed therewith to produce a plastic/wood fiber/gas mixture. During the subjecting step the plastic/wood fiber/gas mixture is subjected to high shear forces in the presence of high pressures and the temperature is maintained below an active volatilizing temperature.
    Type: Application
    Filed: December 7, 2001
    Publication date: November 7, 2002
    Inventors: Chul B. Park, Ghaus M. Rizvi, Haiou Zhang
  • Patent number: RE37932
    Abstract: A supermicrocellular foamed material and a method for producing such material, the material to be foamed such as a polymerplastic material, having a supercritical fluid, such as carbon dioxide in its supercritical state, introduced into the material to form a foamed fluid/material system having a plurality of cells distributed substantially throughout the material. Cell densities lying in a range from about 109 to about 1015 per cubic centimeter of the material can be achieved with the average cell sizes being at least less than 2.0 microns and preferably in a range from about 0.1 micron to about 1.0 micron.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: December 10, 2002
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel F. Baldwin, Nam P. Suh, Chul B. Park, Sung W. Cha