Patents by Inventor Chun-Chieh Chuang

Chun-Chieh Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200359471
    Abstract: A flicker-free linear LED drive circuit is disclosed. The flicker-free linear LED drive circuit converts the input voltage of the external power supply to form an output current to the LED. The flicker-free linear LED drive circuit includes a measuring module, a regulating module and a rectifier module. The flicker-free linear LED drive circuit is characterized in that the measuring module is configured to measure the phase angle of the input voltage after full-wave rectification; the regulating module is used to form the complex voltage signal according to the measurement signal in the voltage waveform of the regulating module for the half-wave period, the conduction angle range formed at the fixed power is used as the basis for electrical conduction in the half-wave period of the input voltage.
    Type: Application
    Filed: November 18, 2019
    Publication date: November 12, 2020
    Inventors: CHIH-HSIEN WU, KAI-CHENG CHUANG, CHUN-CHIEH KUO, YU-HSIEN HE
  • Publication number: 20200306552
    Abstract: A semiconductor device comprises a first chip bonded on a second chip. The first chip comprises a first substrate and first interconnection components formed in first IMD layers. The second chip comprises a second substrate and second interconnection components formed in second IMD layers. The device further comprises a first conductive plug formed within the first substrate and the first IMD layers, wherein the first conductive plug is coupled to a first interconnection component and a second conductive plug formed through the first substrate and the first IMD layers and formed partially through the second IMD layers, wherein the second conductive plug is coupled to a second interconnection component.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung
  • Publication number: 20200305297
    Abstract: A casing of an electronic device including a metallic housing, a first non-conductive spacer and a second non-conductive spacer is provided. The metallic housing has an inner surface and an outer surface opposite to the inner surface, and the outer surface has a back side and lateral sides connecting with the back side. The inner surface is substantially a recessed structure. The metallic housing having a first gap and a second gap substantially located at two opposite ends of the metallic housing and being parallel with each other. The first non-conductive spacer is disposed the first gap, and the second non-conductive spacer is disposed in the second gap.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Applicant: HTC Corporation
    Inventors: Tim Chung-Ting Wu, Cheng-Chieh Chuang, Chi-Jen Lu, Chun-Lung Chu, Chien-Hung Lin
  • Publication number: 20200237996
    Abstract: A filter material and a manufacturing method thereof are provided. The manufacturing method includes hydrophilizing the filter material by supercritical fluid processing technology, so as to filter out white blood cells in the blood.
    Type: Application
    Filed: October 28, 2019
    Publication date: July 30, 2020
    Applicant: Sangtech Lab Inc.
    Inventors: Cheng-Sheng Liang, Po-Ju Lin, Yu-Ping Chen, Chun-Hung Chen, Pei-Chieh Chuang
  • Patent number: 10729026
    Abstract: A casing of an electronic device including a metallic housing and a first non-conductive spacer is provided. The metallic housing has an inner surface and an outer surface opposite to the inner surface, and the outer surface has a back side and lateral sides connecting with the back side. The inner surface is substantially a recessed structure. The metallic housing has a first gap communicating the inner surface and the outer surface, and the metallic housing further includes a second gap and at least one connecting terminal. The first non-conductive spacer is selectively disposed in the first gap of the metallic housing, and extends from a first side of the lateral sides of the metallic housing to the back side of the metallic housing.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: July 28, 2020
    Assignee: HTC Corporation
    Inventors: Tim Chung-Ting Wu, Cheng-Chieh Chuang, Chi-Jen Lu, Chun-Lung Chu, Chien-Hung Lin
  • Publication number: 20200235159
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first image sensor disposed within a first substrate and a second image sensor disposed within a second substrate. The second substrate has a first side facing the first substrate. The first side includes angled surfaces defining one or more recesses within the first side. A band-pass filter is arranged between the first substrate and the second substrate and is configured to reflect electromagnetic radiation that is within a first range of wavelengths.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 23, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200227461
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200227460
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Application
    Filed: April 1, 2020
    Publication date: July 16, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Patent number: 10682523
    Abstract: A semiconductor device comprises a first chip bonded on a second chip. The first chip comprises a first substrate and first interconnection components formed in first IMD layers. The second chip comprises a second substrate and second interconnection components formed in second IMD layers. The device further comprises a first conductive plug formed within the first substrate and the first IMD layers, wherein the first conductive plug is coupled to a first interconnection component and a second conductive plug formed through the first substrate and the first IMD layers and formed partially through the second IMD layers, wherein the second conductive plug is coupled to a second interconnection component.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: June 16, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung
  • Patent number: 10672812
    Abstract: An image sensor includes a color filter array and a light receiving element. The color filter array includes plural repeating unit cells including first, second, and third unit cells. The first and second unit cells are adjacent to each other in a first direction, the second and third unit cells are adjacent to each other in a second direction transverse to the first direction. Each of the first, second, and third unit cells includes at least one first yellow filter configured to transmit a green component and a red component of incident light, and each of the first, second, and third unit cells does not comprise a red filter configured to transmit the red component of the incident light. The light receiving element is configured to convert the incident light transmitted by the color filter array into electric signals.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chieh Chiang, Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto
  • Patent number: 10651220
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Patent number: 10651225
    Abstract: In some embodiments, the present disclosure relates to a three-dimensional integrated chip. The three-dimensional integrated chip includes a first integrated chip (IC) die and a second IC die. The first IC die has a first image sensor element configured to generate electrical signals from electromagnetic radiation within a first range of wavelengths. The second IC die has a second image sensor element configured to generate electrical signals from electromagnetic radiation within a second range of wavelengths that is different than the first range of wavelengths. A first band-pass filter is arranged between the first IC die and the second IC die and is configured to reflect electromagnetic radiation that is within the first range of wavelengths.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200127027
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element and a second semiconductor element bonded on the first semiconductor element. The first semiconductor element includes a first substrate, a common conductive feature in the first substrate, a first inter-level dielectric (ILD) layer, a first interconnection feature and a conductive plug connecting the first interconnection feature to the common conductive feature. The second semiconductor element includes a second substrate, a second ILD layers over the second substrate and a second interconnection feature in second ILD layers. The device also includes a conductive deep plug connecting to the common conductive feature in the first semiconductor element and the second interconnection feature. The conductive deep plug is separated with the conductive plug by the first ILD layer.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Tzu-Hsuan Hsu, Shu-Ting Tsai, Min-Feng Kao
  • Publication number: 20200119076
    Abstract: A BSI image sensor includes a substrate including a front side and a back side opposite to the front side, a pixel sensor disposed in the substrate, and a color filter disposed over the pixel sensor. The pixel sensor includes a plurality of first micro structures disposed over the back side of the substrate. The color filter includes a plurality of second micro structures disposed over the back side of the substrate. Each of the first micro structures has a first height, and each of the second micro structures has a second height. The second height is less than the first height.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: WEI-CHIEH CHIANG, KENG-YU CHOU, CHUN-HAO CHUANG, WEN-HAU WU, JHY-JYI SZE, CHIEN-HSIEN TSENG, KAZUAKI HASHIMOTO
  • Publication number: 20200105815
    Abstract: In some embodiments, the present disclosure relates to a three-dimensional integrated chip. The three-dimensional integrated chip includes a first integrated chip (IC) die and a second IC die. The first IC die has a first image sensor element configured to generate electrical signals from electromagnetic radiation within a first range of wavelengths. The second IC die has a second image sensor element configured to generate electrical signals from electromagnetic radiation within a second range of wavelengths that is different than the first range of wavelengths. A first band-pass filter is arranged between the first IC die and the second IC die and is configured to reflect electromagnetic radiation that is within the first range of wavelengths.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 2, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20200098808
    Abstract: An image sensor package is provided. The image sensor package comprises a package substrate, and an image sensor chip arranged over the package substrate. The integrated circuit device further comprises a protection layer overlying the image sensor chip having a planar top surface and a bottom surface lining and contacting structures under the protection layer, and an on-wafer shield structure spaced around a periphery of the image sensor chip. The height of the image sensor package can be reduced since a discrete cover glass or an infrared filter and corresponding intervening materials are no longer needed since being replaced by the build in protection layer. The size of the image sensor package can be reduced since a discrete light shield and corresponding intervening materials are no longer needed since being replaced by the build in on wafer light shield structure.
    Type: Application
    Filed: December 20, 2018
    Publication date: March 26, 2020
    Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
  • Publication number: 20200098801
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip has an image sensor within a substrate. A first dielectric has an upper surface that extends over a first side of the substrate and over one or more trenches within the first side of the substrate. The one or more trenches laterally surround the image sensor. An internal reflection structure arranged over the upper surface of the first dielectric. The internal reflection structure is configured to reflect radiation exiting from the substrate back into the substrate.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang, Jhy-Jyi Sze
  • Publication number: 20200098813
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: May 20, 2019
    Publication date: March 26, 2020
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20200091210
    Abstract: A BSI image sensor includes a substrate including a front side and a back side opposite to the front side, a pixel sensor disposed in the substrate, an isolation structure surrounding the pixel sensor and disposed in the substrate, a dielectric layer disposed over the pixel sensor on the front side of the substrate, and a plurality of conductive structures disposed in the dielectric layer and arranged to align with the isolation structure.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: WEN-HAU WU, KENG-YU CHOU, CHUN-HAO CHUANG, WEI-CHIEH CHIANG, CHIEN-HSIEN TSENG, KAZUAKI HASHIMOTO
  • Publication number: 20200075659
    Abstract: An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Feng-Chi Hung, Shuang-Ji Tsai, Jen-Shyan Lin, Shu-Ting Tsai, Wen-I Hsu