Patents by Inventor Chun-Fu CHENG

Chun-Fu CHENG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210375938
    Abstract: A three-dimensional memory device and a manufacturing method thereof are provided. The three-dimensional memory device includes first and second stacking structures, isolation pillars, gate dielectric layers, channel layers and conductive pillars. The stacking structures are laterally spaced apart from each other. The stacking structures respectively comprises alternately stacked insulating layers and conductive layers. The isolation pillars laterally extend between the stacking structures. The isolation pillars further protrude into the stacking structures, and a space between the stacking structures is divided into cell regions. The gate dielectric layers are respectively formed in one of the cell regions, and cover opposing sidewalls of the stacking structures and sidewalls of the isolation pillars. The channel layers respectively cover an inner surface of one of the gate dielectric layers.
    Type: Application
    Filed: January 26, 2021
    Publication date: December 2, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Han Lin, Chun-Fu Cheng, Feng-Cheng Yang, Sheng-Chen Wang, Yu-Chien Chiu, Han-Jong Chia
  • Publication number: 20210366907
    Abstract: A semiconductor device according to the present disclosure includes a first interconnect structure, a first transistor over the first interconnect structure, a second transistor over the first transistor, and a second interconnect structure over the second transistor. The first transistor includes first nanostructures and a first source region adjoining the first nanostructures. The second transistor includes second nanostructures and a second source region adjoining the second nanostructures. The first source region is coupled to a first power rail in the first interconnect structure, and the second source region is coupled to a second power rail in the second interconnect structure.
    Type: Application
    Filed: November 9, 2020
    Publication date: November 25, 2021
    Inventors: Yi-Bo Liao, Yu-Xuan Huang, Wei Ju Lee, Hou-Yu Chen, Chun-Fu Cheng
  • Patent number: 11152338
    Abstract: A method includes forming a stacked structure of a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked in a first direction over a substrate, the first semiconductor layers being thicker than the second semiconductor layers. The method also includes patterning the stacked structure into a first fin structure and a second fin structure extending along a second direction substantially perpendicular to the first direction. The method further includes removing the first semiconductor layers of the first fin structure to form a plurality of nanowires. Each of the nanowires has a first height, there is a distance between two adjacent nanowires along the vertical direction, and the distance is greater than the first height. The method includes forming a first gate structure between the second semiconductor layers of the first fin structure.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhi-Qiang Wu, Chun-Fu Cheng, Chung-Cheng Wu, Yi-Han Wang, Chia-Wen Liu
  • Publication number: 20210305249
    Abstract: The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu
  • Patent number: 11037925
    Abstract: The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu
  • Publication number: 20210134718
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a first vertical structure and a second vertical structure formed over the substrate, and a conductive rail structure between the first and second vertical structures. A top surface of the conductive rail structure can be substantially coplanar with top surfaces of the first and the second vertical structures.
    Type: Application
    Filed: March 27, 2020
    Publication date: May 6, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Bo LIAO, Wei Ju Lee, Cheng-Ting Chung, Hou-Yu Chen, Chun-Fu Cheng, Kuan-Lun Cheng
  • Publication number: 20210125858
    Abstract: The present disclosure describes a method of fabricating a semiconductor structure that includes forming a dummy gate structure over a substrate, forming a first spacer on a sidewall of the dummy gate structure and a second spacer on the first spacer, forming a source/drain structure on the substrate, removing the second spacer, forming a dielectric structure over the source/drain structure, replacing the dummy gate structure with a metal gate structure and a capping structure on the metal gate structure, and forming an opening in the dielectric structure. The opening exposes the source/drain structure. The method further includes forming a dummy spacer on a sidewall of the opening, forming a contact structure in the opening, and removing the dummy spacer to form an air gap between the contact structure and the metal gate structure. The contact structure is in contact with the source/drain structure in the opening.
    Type: Application
    Filed: March 19, 2020
    Publication date: April 29, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Meng-Yu LIN, Chun-Fu CHENG, Chung-Wei WU, Zhiqiang WU
  • Publication number: 20210126135
    Abstract: A semiconductor device includes a substrate, a plurality of nanowires, a gate structure, a source/drain epitaxy structure, and a semiconductor layer. The substrate has a protrusion portion. The nanowires extend in a first direction above the protrusion portion of the substrate, the nanowires being arranged in a second direction substantially perpendicular to the first direction. The gate structure wraps around each of the nanowires. The source/drain epitaxy structure is in contact with an end surface of each of the nanowires, in which a bottom surface of the source/drain epitaxy structure is lower than a top surface of the protrusion portion of the substrate. The semiconductor layer is in contact with the bottom surface of the epitaxy structure, in which the semiconductor layer is spaced from the protrusion portion of the substrate.
    Type: Application
    Filed: October 29, 2019
    Publication date: April 29, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Ju LEE, Chun-Fu CHENG, Chung-Wei WU, Zhiqiang WU
  • Publication number: 20210118882
    Abstract: The present disclosure provides an integrated circuit that includes a circuit formed on a semiconductor substrate; and a de-cap device formed on the semiconductor substrate and integrated with the circuit. The de-cap device includes a filed-effect transistor (FET) that further includes a source and a drain connected through contact features landing on the source and drain, respectively; a gate stack overlying a channel and interposed between the source and the drain; and a doped feature disposed underlying the channel and connecting to the source and the drain, wherein the doped feature is doped with a dopant of a same type of the source and the drain.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Inventors: Ching-Wei Tsai, Yu-Xuan Huang, Kuan-Lun Cheng, Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu
  • Publication number: 20210066477
    Abstract: The present disclosure provides a method of manufacturing a semiconductor device. The method includes forming a fin structure in which first semiconductor layers and second semiconductor layers are alternately stacked; forming a sacrificial gate structure over the fin structure; etching a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming a source/drain trench; laterally etching the first semiconductor layers through the source/drain trench; forming an inner spacer layer, in the source/drain trench, at least on lateral ends of the etched first semiconductor layers; forming a seeding layer on the inner spacer layer; and growing a source/drain epitaxial layer in the source/drain trench, wherein the growing of the source/drain epitaxial layer includes growing the source/drain epitaxial layer from the seeding layer.
    Type: Application
    Filed: July 17, 2020
    Publication date: March 4, 2021
    Inventors: Wei Ju Lee, Chun-Fu Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 10861972
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. In some embodiments, the present disclosure relates to a finFET device and its formation. A strain-inducing layer is disposed on a semiconductor fin between a channel region and a metal gate electrode. First and second inner spacers are disposed on a top surface of the strain-inducing layer and have inner sidewalls disposed along outer sidewalls of the metal gate electrode. First and second outer spacers have innermost sidewalls disposed along outer sidewalls of the first and second inner spacers, respectively. The first and second outer spacers cover outer sidewalls of the first and second inner spacers.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Publication number: 20200294973
    Abstract: A method includes forming a stacked structure of a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked in a first direction over a substrate, the first semiconductor layers being thicker than the second semiconductor layers. The method also includes patterning the stacked structure into a first fin structure and a second fin structure extending along a second direction substantially perpendicular to the first direction. The method further includes removing the first semiconductor layers of the first fin structure to form a plurality of nanowires. Each of the nanowires has a first height, there is a distance between two adjacent nanowires along the vertical direction, and the distance is greater than the first height. The method includes forming a first gate structure between the second semiconductor layers of the first fin structure.
    Type: Application
    Filed: June 1, 2020
    Publication date: September 17, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang WU, Chun-Fu CHENG, Chung-Cheng WU, Yi-Han WANG, Chia-Wen LIU
  • Patent number: 10672742
    Abstract: A device includes a substrate, a stacked structure and a first gate stack. The stacked structure includes a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked over the substrate. One of the first semiconductor layers has a height greater than a height of one the second semiconductor layers. The first gate stack wraps around the stacked structure.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Zhi-Qiang Wu, Chun-Fu Cheng, Chung-Cheng Wu, Yi-Han Wang, Chia-Wen Liu
  • Patent number: 10516047
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a dielectric layer. The semiconductor device structure also includes a gate stack structure in the dielectric layer. The semiconductor device structure further includes a semiconductor wire partially surrounded by the gate stack structure. In addition, the semiconductor device structure includes a contact electrode in the dielectric layer and electrically connected to the semiconductor wire. The contact electrode and the gate stack structure extend from the semiconductor wire in opposite directions.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kam-Tou Sio, Jiann-Tyng Tzeng, Charles Chew-Yuen Young, Yi-Ming Sheu, Chun-Fu Cheng, Yi-Han Wang
  • Publication number: 20190245089
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. In some embodiments, the present disclosure relates to a finFET device and its formation. A strain-inducing layer is disposed on a semiconductor fin between a channel region and a metal gate electrode. First and second inner spacers are disposed on a top surface of the strain-inducing layer and have inner sidewalls disposed along outer sidewalls of the metal gate electrode. First and second outer spacers have innermost sidewalls disposed along outer sidewalls of the first and second inner spacers, respectively. The first and second outer spacers cover outer sidewalls of the first and second inner spacers.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Publication number: 20190131274
    Abstract: A device includes a substrate, a stacked structure and a first gate stack. The stacked structure includes a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked over the substrate. One of the first semiconductor layers has a height greater than a height of one the second semiconductor layers. The first gate stack wraps around the stacked structure.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Inventors: Zhi-Qiang WU, Chun-Fu CHENG, Chung-Cheng WU, Yi-Han WANG, Chia-Wen LIU
  • Patent number: 10276717
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. The present disclosure relates to a method of forming a strain inducing layer or cap layer at the RPG (replacement poly silicon gate) stage of a finFET device formation process. In some embodiments, the strain inducing layer is doped to reduce the external resistance.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Publication number: 20180151729
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a dielectric layer. The semiconductor device structure also includes a gate stack structure in the dielectric layer. The semiconductor device structure further includes a semiconductor wire partially surrounded by the gate stack structure. In addition, the semiconductor device structure includes a contact electrode in the dielectric layer and electrically connected to the semiconductor wire. The contact electrode and the gate stack structure extend from the semiconductor wire in opposite directions.
    Type: Application
    Filed: March 28, 2017
    Publication date: May 31, 2018
    Inventors: Kam-Tou SIO, Jiann-Tyng TZENG, Charles Chew-Yuen YOUNG, Yi-Ming SHEU, Chun-Fu CHENG, Yi-Han WANG
  • Patent number: 9659776
    Abstract: First and second fins are formed extending from a substrate. A first layer is formed over the first fin. The first layer comprises a first dopant. A portion of the first layer is removed from a tip portion of the first fin. A second layer is formed over the second fin. The second layer comprises a second dopant. One of the first and second dopants is a p-type dopant, and the other of the first and second dopants is an n-type dopant. A portion of the second layer is removed from a tip portion of the second fin. A solid phase diffusion process is performed to diffuse the first dopant into a non-tip portion of the first fin, and to diffuse the second dopant into a non-tip portion of the second fin.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Kai Chen, Tsung-Hung Lee, Han-Pin Chung, Shih-Syuan Huang, Chun-Fu Cheng, Chien-Tai Chan, Kuang-Yuan Hsu, Hsien-Chin Lin, Ka-Hing Fung
  • Publication number: 20160365447
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. The present disclosure relates to a method of forming a strain inducing layer or cap layer at the RPG (replacement poly silicon gate) stage of a finFET device formation process. In some embodiments, the strain inducing layer is doped to reduce the external resistance.
    Type: Application
    Filed: August 25, 2016
    Publication date: December 15, 2016
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen