Patents by Inventor Chun-Hsiang FAN

Chun-Hsiang FAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923437
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate. A semiconductor strip is between the isolation regions. The method further includes recessing the isolation regions so that a top portion of the semiconductor strip protrudes higher than top surfaces of the isolation regions to form a semiconductor fin, measuring a fin width of the semiconductor fin, generating an etch recipe based on the fin width, and performing a thinning process on the semiconductor fin using the etching recipe.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20240047545
    Abstract: Fin and nanostructured channel structure formation techniques for three-dimensional transistors can tune device performance. For example, fin profile control can be achieved by modifying the shape of fins/nanostructured channel structures so as to reduce their line edge roughness. Consequently, current flow within the channel regions of fins and nanostructured channel structures can be improved, enhancing device performance.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 8, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ssu-Yu Liao, Ta-Wei Lin, Tsu-Hui Su, Chun-Hsiang Fan, Chun-Hsiang Fan, Kuo-Bin Huang
  • Publication number: 20230387263
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate. A semiconductor strip is between the isolation regions. The method further includes recessing the isolation regions so that a top portion of the semiconductor strip protrudes higher than top surfaces of the isolation regions to form a semiconductor fin, measuring a fin width of the semiconductor fin, generating an etch recipe based on the fin width, and performing a thinning process on the semiconductor fin using the etching recipe.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 30, 2023
    Inventors: Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11823945
    Abstract: A method for cleaning a semiconductor wafer is provided. The method includes placing a semiconductor wafer over a supporter arranged around a central axis of a spin base. The method further includes securing the semiconductor wafer using a clamping member positioned on the supporter. The movement of the semiconductor wafer during the placement of the semiconductor wafer over the supporter is guided by a guiding member located over the clamping member. The method also includes spinning the semiconductor wafer by rotating the spin base about the central axis. In addition, the method includes dispensing a processing liquid over the semiconductor wafer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Wang-Hua Lin, Chun-Liang Tai, Chun-Hsiang Fan, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20230369134
    Abstract: A method of manufacturing a semiconductor device is provided.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Liang Tai, Chun-Hsiang Fan, Ta-Wei Lin, Shih-Hsiang Chiu, Kuo-Bin Huang, Chieh-Chun Chiang
  • Publication number: 20230317829
    Abstract: A method for forming a semiconductor device structure is provided. The method includes providing a substrate, a fin, and a semiconductor layer. The fin is over the substrate, the semiconductor layer is over the fin, the substrate and the fin are made of different materials, and the fin and the semiconductor layer are made of different materials. The method includes forming a dielectric layer over the semiconductor layer and the fin. The method includes forming a semiconductor structure over a sidewall of the dielectric layer. The method includes removing a first top portion of the dielectric layer over a top surface of the semiconductor layer. The method includes forming a gate over the semiconductor layer, the dielectric layer, and the semiconductor structure.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhiqiang WU, Kuo-An LIU, Kai Tak LAM, Meng-Yu LIN, Chun-Fu CHENG, Chieh-Chun CHIANG, Chun-Hsiang FAN
  • Patent number: 11772134
    Abstract: A method includes cleaning a wafer with a brush element where the brush element collects particles from the wafer during the cleaning process. The brush element is immersed in a first cleaning liquid. An ultrasonic or megasonic vibration is applied to the first cleaning liquid. The ultrasonic or megasonic vibration causes the particles to dislodge from the brush element into the first cleaning liquid. The particles contaminate the first cleaning liquid.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Han-Yeou Huang, Chun-Hsiang Fan
  • Patent number: 11670717
    Abstract: A semiconductor device includes a fin feature in a substrate, a stack of semiconductor layers over the fin feature. Each of the semiconductor layers does not contact each other. The device also includes a semiconductor oxide layer interposed between the fin feature and the stack of the semiconductor layers. A surface of the semiconductor oxide layer contacts the fin feature and an opposite surface of the semiconductor oxide layer contacts a bottom layer of the stack of semiconductor layers. The device also includes a conductive material layer encircling each of the semiconductor layers and filling in spaces between each of two semiconductor layers.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: June 6, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Lien Huang, Tung Ying Lee, Chun-Hsiang Fan
  • Publication number: 20230147848
    Abstract: A method includes depositing a silicon layer over a semiconductor region, forming dielectric isolation regions extending into the silicon layer and the semiconductor region, and recessing the dielectric isolation regions. A first portion of the silicon layer and a second portion of the semiconductor region are between the dielectric isolation regions, and protrude higher than top surfaces of the dielectric isolation regions to form a semiconductor fin. The semiconductor fin is thinned, and after the first semiconductor fin is thinned, the first portion of the silicon layer remains. A gate stack is formed on the semiconductor fin.
    Type: Application
    Filed: January 6, 2023
    Publication date: May 11, 2023
    Inventors: Tsu-Hui Su, Ssu-Yu Liao, Chun-Hsiang Fan, Kuo-Bin Huang
  • Publication number: 20220359734
    Abstract: Methods for improving profiles of channel regions in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a semiconductor fin over a semiconductor substrate, the semiconductor fin including germanium, a germanium concentration of a first portion of the semiconductor fin being greater than a germanium concentration of a second portion of the semiconductor fin, a first distance between the first portion and a major surface of the semiconductor substrate being less than a second distance between the second portion and the major surface of the semiconductor substrate; and trimming the semiconductor fin, the first portion of the semiconductor fin being trimmed at a greater rate than the second portion of the semiconductor fin.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Ssu-Yu Liao, Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11424347
    Abstract: Methods for improving profiles of channel regions in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a semiconductor fin over a semiconductor substrate, the semiconductor fin including germanium, a germanium concentration of a first portion of the semiconductor fin being greater than a germanium concentration of a second portion of the semiconductor fin, a first distance between the first portion and a major surface of the semiconductor substrate being less than a second distance between the second portion and the major surface of the semiconductor substrate; and trimming the semiconductor fin, the first portion of the semiconductor fin being trimmed at a greater rate than the second portion of the semiconductor fin.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ssu-Yu Liao, Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20220045199
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate. A semiconductor strip is between the isolation regions. The method further includes recessing the isolation regions so that a top portion of the semiconductor strip protrudes higher than top surfaces of the isolation regions to form a semiconductor fin, measuring a fin width of the semiconductor fin, generating an etch recipe based on the fin width, and performing a thinning process on the semiconductor fin using the etching recipe.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventors: Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Publication number: 20210391449
    Abstract: Methods for improving profiles of channel regions in semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a semiconductor fin over a semiconductor substrate, the semiconductor fin including germanium, a germanium concentration of a first portion of the semiconductor fin being greater than a germanium concentration of a second portion of the semiconductor fin, a first distance between the first portion and a major surface of the semiconductor substrate being less than a second distance between the second portion and the major surface of the semiconductor substrate; and trimming the semiconductor fin, the first portion of the semiconductor fin being trimmed at a greater rate than the second portion of the semiconductor fin.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Ssu-Yu Liao, Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11158726
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate. A semiconductor strip is between the isolation regions. The method further includes recessing the isolation regions so that a top portion of the semiconductor strip protrudes higher than top surfaces of the isolation regions to form a semiconductor fin, measuring a fin width of the semiconductor fin, generating an etch recipe based on the fin width, and performing a thinning process on the semiconductor fin using the etching recipe.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 11133200
    Abstract: A method of processing a semiconductor substrate is provided. The semiconductor substrate may be placed on a spin chuck with a plurality of holding members, each holding member including a pin having a sloped portion to provide a gap between an upper edge of the substrate and the pin. Thereafter, one or more treatment fluids may be dispensed over the substrate.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Liang Tai, Chun-Hsiang Fan, Kuo-Bin Huang, Ming-Hsi Yeh
  • Patent number: 10930784
    Abstract: FETs and methods for forming FETs are disclosed. A structure comprises a substrate, a gate dielectric and a gate electrode. The substrate comprises a fin, and the fin comprises an epitaxial channel region. The epitaxial channel has a major surface portion of an exterior surface. The major surface portion comprising at least one lattice shift, and the at least one lattice shift comprises an inward or outward shift relative to a center of the fin. The gate dielectric is on the major surface portion of the exterior surface. The gate electrode is on the gate dielectric.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 23, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chun-Hsiang Fan, Tung Ying Lee, Chi-Wen Liu
  • Publication number: 20210036130
    Abstract: A method includes forming isolation regions extending into a semiconductor substrate. A semiconductor strip is between the isolation regions. The method further includes recessing the isolation regions so that a top portion of the semiconductor strip protrudes higher than top surfaces of the isolation regions to form a semiconductor fin, measuring a fin width of the semiconductor fin, generating an etch recipe based on the fin width, and performing a thinning process on the semiconductor fin using the etching recipe.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Tsu-Hui Su, Chun-Hsiang Fan, Yu-Wen Wang, Ming-Hsi Yeh, Kuo-Bin Huang
  • Patent number: 10868149
    Abstract: A method includes providing a structure having a substrate and a fin extending from the substrate, wherein the fin includes a first semiconductor material and has a source region, a channel region, and a drain region for a transistor; forming a gate stack over the channel region; performing a surface treatment to the fin in the source and drain regions, thereby converting an outer portion of the fin in the source and drain regions into a different material other than the first semiconductor material; etching the converted outer portion of the fin in the source and drain regions, thereby reducing a width of the fin in the source and drain regions; and depositing an epitaxial layer over the fin in the source and drain regions.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Han Fan, Wei-Yuan Lu, Yu-Lin Yang, Chun-Hsiang Fan, Sai-Hooi Yeong
  • Publication number: 20200321468
    Abstract: A semiconductor device includes a fin feature in a substrate, a stack of semiconductor layers over the fin feature. Each of the semiconductor layers does not contact each other. The device also includes a semiconductor oxide layer interposed between the fin feature and the stack of the semiconductor layers. A surface of the semiconductor oxide layer contacts the fin feature and an opposite surface of the semiconductor oxide layer contacts a bottom layer of the stack of semiconductor layers. The device also includes a conductive material layer encircling each of the semiconductor layers and filling in spaces between each of two semiconductor layers.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Yu-Lien Huang, Tung Ying Lee, Chun-Hsiang Fan
  • Publication number: 20200279766
    Abstract: A method for cleaning a semiconductor wafer is provided. The method includes placing a semiconductor wafer over a supporter arranged around a central axis of a spin base. The method further includes securing the semiconductor wafer using a clamping member positioned on the supporter. The movement of the semiconductor wafer during the placement of the semiconductor wafer over the supporter is guided by a guiding member located over the clamping member. The method also includes spinning the semiconductor wafer by rotating the spin base about the central axis. In addition, the method includes dispensing a processing liquid over the semiconductor wafer.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Inventors: Wang-Hua LIN, Chun-Liang TAI, Chun-Hsiang FAN, Ming-Hsi YEH, Kuo-Bin HUANG