Patents by Inventor Chun-Ling Lin
Chun-Ling Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240387182Abstract: A method of fabricating a semiconductor device is described. A substrate is provided. A first semiconductor region of a first semiconductor material is formed over the substrate and adjacent a second semiconductor region of a second semiconductor material. The first and second semiconductor regions are crystalline. An etchant is selective to etch the first semiconductor region over the second semiconductor region. The entire first semiconductor region is implanted to form an amorphized semiconductor region. The amorphized semiconductor region is etched with the etchant using the second semiconductor region as a mask to remove the amorphized semiconductor region without removing the second semiconductor region.Type: ApplicationFiled: July 29, 2024Publication date: November 21, 2024Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Ling Chung, Chun-Chih Cheng, Shun-Wu Lin, Ming-Hsi Yeh, Kuo-Bin Huang
-
Patent number: 12148723Abstract: A structure of semiconductor device is provided, including a first circuit structure, formed on a first substrate. A first test pad is disposed on the first substrate. A second circuit structure is formed on a second substrate. A second test pad is disposed on the second substrate. A first bonding pad of the first circuit structure is bonded to a second bonding pad of the second circuit structure. One of the first test pad and the second test pad is an inner pad while another one of the first test pad and the second test pad is an outer pad, wherein the outer pad surrounds the inner pad.Type: GrantFiled: December 7, 2022Date of Patent: November 19, 2024Assignee: United Microelectronics Corp.Inventors: Zhirui Sheng, Hui-Ling Chen, Chung-Hsing Kuo, Chun-Ting Yeh, Ming-Tse Lin, Chien En Hsu
-
Publication number: 20240332354Abstract: A method of forming a semiconductor device includes: forming an opening in a dielectric layer to expose an underlying conductive feature; conformally forming a first protection layer and a second protection layer in the opening; performing an anisotropic etching to remove a first portion of the second protection layer from the bottom of the opening while keeping a second portion of the second protection layer along the sidewalls of the opening; after the anisotropic etching, performing an isotropic etching to remove, from the sidewalls of the opening, an upper portion and a lower portion of the first protection layer while keeping a middle portion of the first protection layer along the sidewalls of the opening; after the isotropic etching, performing an anneal to at least partially convert the second portion of the second protection layer into an oxide; and after the anneal, filling the opening with a conductive material.Type: ApplicationFiled: March 28, 2023Publication date: October 3, 2024Inventors: Chun-Neng Lin, Yu-Shih Wang, Chia-Ling Chung
-
Publication number: 20240332189Abstract: A method for fabricating an interconnect structure is disclosed. A substrate with a first dielectric layer is provided. A first conductor is formed in the first dielectric layer. A second dielectric layer is formed on the first dielectric layer. A trench is formed in the second dielectric layer to expose the top surface of the first conductor. An annealing process is performed on the top surface of the first conductor. The annealing process includes the conditions of a temperature of 400-450° C., duration less than 5 minutes, and gaseous atmosphere comprising hydrogen and nitrogen.Type: ApplicationFiled: April 20, 2023Publication date: October 3, 2024Applicant: UNITED MICROELECTRONICS CORP.Inventors: Shih-Cheng Chen, Ko-Wei Lin, Ying-Wei Yen, Chun-Ling Lin, Po-Jen Chuang
-
Patent number: 12068545Abstract: An antenna structure includes a first signal source, a second signal source, a first radiator, a second radiator, a third radiator, a first circuit, and a second circuit. The first signal source is used to generate a first wireless signal, and the second signal source is used to generate a second wireless signal. The first radiator is coupled to the first signal source to receive the first wireless signal, and the second radiator is coupled to the second signal source to receive the second wireless signal. The first circuit has a first end coupled to the third radiator and a second end coupled to the first radiator or the first signal source. The second circuit has a first end coupled to the third radiator and a second end coupled to the second radiator or the second signal source.Type: GrantFiled: August 18, 2023Date of Patent: August 20, 2024Assignee: HTC CorporationInventors: Cheng-Hung Lin, Szu-Po Wang, Chia-Te Chien, Chun-Chieh Wang, Kang-Ling Li, Chun-Hsien Lee, Yu-Chieh Chiu
-
Patent number: 12046823Abstract: A communication device includes a nonconductive track, an antenna element, a first turning wheel, and a second turning wheel. The antenna element is disposed on the nonconductive track. The first turning wheel and the second turning wheel drive the nonconductive track according to a control signal, so as to adjust the position of the antenna element. The communication device provides an almost omnidirectional radiation pattern.Type: GrantFiled: April 4, 2022Date of Patent: July 23, 2024Assignee: HTC CORPORATIONInventors: Cheng-Hung Lin, Szu-Po Wang, Chia-Te Chien, Chun-Chieh Wang, Kang-Ling Li, Chun-Hsien Lee, Yu-Chieh Chiu
-
Publication number: 20240199685Abstract: The present disclosure provides a preparation method of setmelanotide by cyclization of a disulfide bond in a solid phase. By using different solvents or mixed solvents to carry out a cyclization reaction in a solid phase, the reaction concentration can be greatly increased in comparison with a cyclization reaction in a liquid phase, and the production of impurities can also be reduced, so that the effects of reducing the use of the solvents and increasing the production capacity are achieved.Type: ApplicationFiled: May 4, 2023Publication date: June 20, 2024Inventors: YAO-LUNG HSU, CHUN-I LEE, CHUN-LING LIN, YA-LING HUANG, JIA-CHUN LEE
-
Publication number: 20230263467Abstract: A method for detecting a particular syndrome based on hemodynamic analysis that includes steps of: obtaining a piece of hemodynamic data representing a hemodynamic waveform; performing moving average (MA) filtering on the hemodynamic waveform to obtain a filtered waveform; determining troughs in order to determine waveform segments of the filtered waveform; determining systolic peaks for determining first and second portions of the waveform segments; determining smoothness of the second portions; and determining a relation between the hemodynamic waveform and a particular syndrome based on the smoothness of the second portions, and generating a detection result.Type: ApplicationFiled: June 23, 2022Publication date: August 24, 2023Applicants: Giant Power Technology Biomedical Corp., National Taipei University of TechnologyInventors: Po-En Liu, Shu-Hung Chao, Ming-Kun Huang, Chien-Jen Wang, Ing-Lan Liou, Chun- Young Chang, Chin-Kun Tseng, Zi-Yi Zhuang, Ya-Wen Chao, Hsuan-Yu Liu, Gu-Neng Wu, Chun-Ling Lin, Yuh-Shyan Hwang, San-Fu Wang, I-Chyn Wey, Jason King
-
Publication number: 20230263402Abstract: A method for detecting a particular syndrome based on hemodynamic analysis that includes steps of: obtaining a piece of hemodynamic data representing a hemodynamic waveform; performing moving average (MA) filtering on the hemodynamic waveform to obtain a filtered waveform; determining troughs in order to determine waveform segments of the filtered waveform; determining smoothness of the waveform segments; and determining a relation between the hemodynamic waveform and a particular syndrome based on the smoothness of the waveform segments, and generating a detection result.Type: ApplicationFiled: June 23, 2022Publication date: August 24, 2023Applicants: Giant Power Technology Biomedical Corp., National Taipei University of TechnologyInventors: CHIEN-JEN WANG, Po-En Liu, Shu-Hung Chao, Ming-Kun Huang, Ing-Lan Liou, Chun- Young Chang, Chin-Kun Tseng, Zi-Yi Zhuang, Ya-Wen Chao, Hsuan-Yu Liu, Gu-Neng Wu, Chun-Ling Lin, Yuh-Shyan Hwang, San-Fu Wang, I-Chyn Wey, Jason King
-
Publication number: 20230238445Abstract: A high electron mobility transistor (HEMT) includes a substrate, a channel layer, a barrier layer and a passivation layer. A contact structure is disposed on the passivation layer and extends through the passivation layer and the barrier layer to directly contact the channel layer. The contact structure includes a metal layer, and the metal layer includes a metal material doped with a first additive. A weight percentage of the first additive in the metal layer is between 0% and 2%.Type: ApplicationFiled: February 20, 2022Publication date: July 27, 2023Applicant: UNITED MICROELECTRONICS CORP.Inventors: Ko-Wei Lin, Chun-Chieh Chiu, Chun-Ling Lin, Shu Min Huang, Hsin-Fu Huang
-
Publication number: 20230218268Abstract: A method for detecting a location of a segment of a feeding tube is provided. The feeding tube has a proximal end, a hollow tube body and a distal end, and is placed inside the body of a patient. An audio collecting component is placed on a predetermined part of the patient. The method includes steps of pumping air into the proximal end of the feeding tube, collecting sound to obtain audio data by the audio collecting component, performing audio analysis on the audio data, and determining whether a segment of the hollow tube body is at a part inside the body of the patient that corresponds with the location of the audio collecting component based on result of the audio analysis.Type: ApplicationFiled: June 3, 2022Publication date: July 13, 2023Inventors: Ming-Kun Huang, Chien-Jen Wang, Po-En Liu, Shu-Hung Chao, Ing-Lan Liou, Chun- Young Chang, Chin-Kun Tseng, Zi-Yi Zhuang, Ya-Wen Chao, Hsuan-Yu Liu, Gu-Neng Wu, Chun-Ling Lin, Yuh-Shyan Hwang, San-Fu Wang, I-Chyn Wey, Jason King
-
Publication number: 20200168450Abstract: A method for fabricating interconnect of semiconductor device. The method includes providing a base substrate, having an inter-layer dielectric layer on top. A copper interconnect structure is formed in the inter-layer dielectric layer. A pre-sputter clean process is performed with hydrogen radicals on the copper interconnect structure. A degas process is sequentially performed on the copper interconnect structure. A cobalt cap layer is formed on the copper interconnect structure.Type: ApplicationFiled: November 28, 2018Publication date: May 28, 2020Applicant: United Microelectronics Corp.Inventors: Ko-Wei Lin, Kuan-Hsiang Chen, Hsin-Fu Huang, Chun-Ling Lin, Sheng-Yi Su, Pei-Hsun Kao
-
Patent number: 10446489Abstract: An interconnect structure includes a dielectric layer and a conductor embedded in the dielectric layer. A top surface of the conductor is flush with a top surface of the dielectric layer. A cobalt cap layer is deposited on the top surface of the conductor. A nitrogen-doped cobalt layer is disposed on the cobalt cap layer.Type: GrantFiled: October 25, 2018Date of Patent: October 15, 2019Assignee: UNITED MICROELECTRONICS CORP.Inventors: Ko-Wei Lin, Hung-Miao Lin, Chun-Ling Lin, Ying-Lien Chen, Huei-Ru Tsai, Sheng-Yi Su
-
Patent number: 10323332Abstract: An electrical chemical plating process is provided. A semiconductor structure is provided in an electrical plating platform. A pre-electrical-plating step is performed wherein the pre-electrical-plating step is carried out under a fixed voltage environment and lasts for 0.2 to 0.5 seconds after the current is above the threshold current of the electrical plating platform. After the pre-electrical-plating step, a first electrical plating step is performed on the semiconductor structure.Type: GrantFiled: July 11, 2016Date of Patent: June 18, 2019Assignee: UNITED MICROELECTRONICS CORP.Inventors: Chun-Ling Lin, Yen-Liang Lu, Chi-Mao Hsu, Chin-Fu Lin, Chun-Hung Chen, Tsun-Min Cheng, Chi-Ray Tsai
-
Publication number: 20190067184Abstract: An interconnect structure includes a dielectric layer and a conductor embedded in the dielectric layer. A top surface of the conductor is flush with a top surface of the dielectric layer. A cobalt cap layer is deposited on the top surface of the conductor. A nitrogen-doped cobalt layer is disposed on the cobalt cap layer.Type: ApplicationFiled: October 25, 2018Publication date: February 28, 2019Inventors: Ko-Wei Lin, Hung-Miao Lin, Chun-Ling Lin, Ying-Lien Chen, Huei-Ru Tsai, Sheng-Yi Su
-
Patent number: 10153231Abstract: An interconnect structure includes a dielectric layer and a conductor embedded in the dielectric layer. A top surface of the conductor is flush with a top surface of the dielectric layer. A cobalt cap layer is deposited on the top surface of the conductor. A nitrogen-doped cobalt layer is disposed on the cobalt cap layer.Type: GrantFiled: March 22, 2017Date of Patent: December 11, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Ko-Wei Lin, Hung-Miao Lin, Chun-Ling Lin, Ying-Lien Chen, Huei-Ru Tsai, Sheng-Yi Su
-
Patent number: 10079177Abstract: A method is provided for forming copper material over a substrate. The method includes forming a barrier layer over a substrate. Then, a depositing-soaking-treatment (DST) process is performed over the barrier layer. A copper layer is formed on the cobalt layer. The DST process includes depositing a cobalt layer on the barrier layer. Then, the cobalt layer is soaked with H2 gas at a first pressure. The cobalt layer is treated with a H2 plasma at a second pressure. The second pressure is lower than the first pressure.Type: GrantFiled: September 1, 2017Date of Patent: September 18, 2018Assignee: United Microelectronics Corp.Inventors: Ko-Wei Lin, Ying-Lien Chen, Chun-Ling Lin, Huei-Ru Tsai, Hung-Miao Lin, Sheng-Yi Su, Tzu-Hao Liu
-
Publication number: 20180261537Abstract: An interconnect structure includes a dielectric layer and a conductor embedded in the dielectric layer. A top surface of the conductor is flush with a top surface of the dielectric layer. A cobalt cap layer is deposited on the top surface of the conductor. A nitrogen-doped cobalt layer is disposed on the cobalt cap layer.Type: ApplicationFiled: March 22, 2017Publication date: September 13, 2018Inventors: Ko-Wei Lin, Hung-Miao Lin, Chun-Ling Lin, Ying-Lien Chen, Huei-Ru Tsai, Sheng-Yi Su
-
Publication number: 20180138263Abstract: A semiconductor structure includes a capacitor. The capacitor includes a bottom electrode, a first high-k dielectric layer, a second high-k dielectric layer and a top electrode. The bottom electrode includes a first layer and a second layer disposed on the first layer. The bottom electrode is formed of TiN. The first layer has a crystallization structure. The second layer has an amorphous structure. The first high-k dielectric layer is disposed on the bottom electrode. The first high-k dielectric layer is formed of TiO2. The second high-k dielectric layer is disposed on the first high-k dielectric layer. The second high-k dielectric layer is formed of a material different from TiO2. The top electrode is disposed on the second high-k dielectric layer.Type: ApplicationFiled: November 14, 2016Publication date: May 17, 2018Inventors: Ko-Wei Lin, Yen-Chen Chen, Chin-Fu Lin, Chun-Yuan Wu, Chun-Ling Lin
-
Patent number: 9966425Abstract: A method for fabricating a metal-insulator-metal (MIM) capacitor includes the steps of: forming a capacitor bottom metal (CBM) layer on a material layer; forming a silicon layer on the CBM layer; forming a capacitor dielectric layer on the silicon layer; and forming a capacitor top metal (CTM) layer on the capacitor dielectric layer.Type: GrantFiled: February 28, 2017Date of Patent: May 8, 2018Assignee: UNITED MICROELECTRONICS CORP.Inventors: Jen-Po Huang, Chin-Fu Lin, Bin-Siang Tsai, Xu Yang Shen, Seng Wah Liau, Yen-Chen Chen, Ko-Wei Lin, Chun-Ling Lin, Kuo-Chih Lai, Ai-Sen Liu, Chun-Yuan Wu, Yang-Ju Lu