Patents by Inventor Chun-Ren Cheng

Chun-Ren Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703475
    Abstract: A method includes mounting an integrated electro-microfluidic probe card to a device area on a bio-sensor device wafer, wherein the electro-microfluidic probe card has a first major surface and a second major surface opposite the first major surface. The method further includes electrically connecting at least one electronic probe tip extending from the first major surface to a corresponding conductive area of the device area. The method further includes stamping a test fluid onto the device area. The method further includes measuring via the at least one electronic probe tip a first electrical property of one or more bio-FETs of the device area based on the test fluid.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Shao Liu, Fei-Lung Lai, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 11624726
    Abstract: A sensor array includes a semiconductor substrate, a first plurality of FET sensors and a second plurality of FET sensors. Each of the FET sensors includes a channel region between a source and a drain region in the semiconductor substrate and underlying a gate structure disposed on a first side of the channel region, and a dielectric layer disposed on a second side of the channel region opposite from the first side of the channel region. A first plurality of capture reagents is coupled to the dielectric layer over the channel region of the first plurality of FET sensors, and a second plurality of capture reagents is coupled to the dielectric layer over the channel region of the second plurality of FET sensors. The second plurality of capture reagents is different from the first plurality of capture reagents.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: April 11, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Fu-Chun Huang
  • Publication number: 20230081170
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: October 31, 2022
    Publication date: March 16, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander KALNITSKY, Yi-Shao LIU, Kai-Chih LIANG, Chia-Hua CHU, Chun-Ren CHENG, Chun-Wen CHENG
  • Patent number: 11588095
    Abstract: In some embodiments, a piezoelectric biosensor is provided. The piezoelectric biosensor includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A sensing reservoir is disposed over the piezoelectric structure and exposed to an ambient environment, where the sensing reservoir is configured to collect a fluid comprising a number of bio-entities.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: February 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Fu-Chun Huang
  • Patent number: 11581308
    Abstract: A method for manufacturing a semiconductor structure is provided, wherein the method includes the following operations. A substrate having a transistor is received, wherein the transistor includes a channel region and a gate on a first side of the channel region. A second side of the channel region of the transistor is exposed, wherein the second side is opposite to the first side. A metal oxide is formed on the second side of the channel region of the transistor, wherein the metal oxide contacts the channel region and is exposed to the environment. A semiconductor structure and an operation of a semiconductor structure thereof are also provided.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fu-Chun Huang, Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Alexander Kalnitsky
  • Publication number: 20220384709
    Abstract: In some embodiments, a piezoelectric device is provided. The piezoelectric device includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A heating element is disposed over the semiconductor substrate. The heating element is configured to heat the piezoelectric structure to a recovery temperature for a period of time, where heating the piezoelectric structure to the recovery temperature for the period of time improves a degraded electrical property of the piezoelectric device.
    Type: Application
    Filed: August 5, 2022
    Publication date: December 1, 2022
    Inventors: Alexander Kalnitsky, Chun-Ren Cheng, Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yan-Jie Liao
  • Publication number: 20220376164
    Abstract: In some embodiments, a piezoelectric biosensor is provided. The piezoelectric biosensor includes a semiconductor substrate. A first electrode is disposed over the semiconductor substrate. A piezoelectric structure is disposed on the first electrode. A second electrode is disposed on the piezoelectric structure. A sensing reservoir is disposed over the piezoelectric structure and exposed to an ambient environment, where the sensing reservoir is configured to collect a fluid comprising a number of bio-entities.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Shih-Fen Huang, Fu-Chun Huang
  • Patent number: 11508902
    Abstract: A method of manufacturing a semiconductor device includes: forming a first substrate includes a membrane stack over a first dielectric layer, the membrane stack having a first electrode, a second electrode over the first electrode and a piezoelectric layer between the first electrode and the second electrode, a third electrode over the first dielectric layer, and a second dielectric layer over the membrane stack and the third electrode; forming a second substrate, including: a redistribution layer (RDL) over a third substrate, the RDL having a fourth electrode; and a first cavity on a surface of the RDL adjacent to the fourth electrode; forming a second cavity in one of the first substrate and the second substrate; and bonding the first substrate to the second substrate.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi Heng Tsai, Fu-Chun Huang, Ching-Hui Lin, Chun-Ren Cheng
  • Patent number: 11486854
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: November 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20220306452
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Fan Hu, Chun-Ren Cheng, Hsiang-Fu Chen, Wen-Chuan Tai
  • Patent number: 11365115
    Abstract: Various embodiments of the present disclosure are directed towards a microelectromechanical system (MEMS) device. The MEMS device includes a first dielectric structure disposed over a first semiconductor substrate, where the first dielectric structure at least partially defines a cavity. A second semiconductor substrate is disposed over the first dielectric structure and includes a movable mass, where opposite sidewalls of the movable mass are disposed between opposite sidewall of the cavity. A first piezoelectric anti-stiction structure is disposed between the movable mass and the first dielectric structure, wherein the first piezoelectric anti-stiction structure includes a first piezoelectric structure and a first electrode disposed between the first piezoelectric structure and the first dielectric structure.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: June 21, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fan Hu, Chun-Ren Cheng, Hsiang-Fu Chen, Wen-Chuan Tai
  • Publication number: 20220185656
    Abstract: A method of manufacturing a semiconductor structure includes following operations. A first substrate is provided. A plate is formed over the first substrate. The plate includes a first tensile member, a second tensile member, a semiconductive member between the first tensile member and the second tensile member, and a plurality of apertures penetrating the first tensile member, the semiconductive member and the second tensile member. A membrane is formed over and separated from the plate. The membrane include a plurality of holes. A plurality of conductive plugs passing through the plate or membrane are formed. A plurality of semiconductive pads are formed over the plurality of conductive plugs. The plate is bonded to a second substrate. The second substrate includes a plurality of bond pads, and the semiconductive pads are in contact with the bond pads.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 16, 2022
    Inventors: YI-HSIEN CHANG, CHUN-REN CHENG, WEI-CHENG SHEN, WEN-CHIEN CHEN
  • Patent number: 11353421
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a plurality of micro wells having a sensing gate bottom and a number of stacked well portions. A bottom surface area of a well portion is different from a top surface area of a well portion directly below. The micro wells are formed by multiple etching operations through different materials, including a sacrificial plug, to expose the sensing gate without plasma induced damage.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: June 7, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Shih-Wei Lin, Yi-Shao Liu
  • Patent number: 11320395
    Abstract: An integrated circuit device includes a device layer, an interconnect structure, a conductive layer, a passivation layer and a bioFET. The device layer has a first side and a second side and include source/drain regions and a channel region between the source/drain regions. The interconnect structure is disposed at the first side of the device layer. The conductive layer is disposed at the second side of the device layer. The passivation layer is continuously disposed on the conductive layer and the channel region and exposes a portion of the conductive layer. The bioFET includes the source/drain regions, the channel region and a portion of the passivation layer on the channel region.
    Type: Grant
    Filed: June 14, 2020
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Jui-Cheng Huang, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Fu-Chun Huang
  • Patent number: 11289568
    Abstract: The present disclosure relates to a MIM (metal-insulator-metal) capacitor having a top electrode overlying a substrate. A passivation layer overlies the top electrode. The passivation layer has a step region that continuously contacts and extends from a top surface of the top electrode to sidewalls of the top electrode. A metal frame overlies the passivation layer. The metal frame continuously contacts and extends from a top surface of the passivation layer to upper sidewalls of the passivation layer in the step region. The metal frame has a protrusion that extends through the passivation layer and contacts the top surface of the top electrode.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: March 29, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Yuan Shih, Kai-Fung Chang, Shih-Fen Huang, Wen-Chuan Tai, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Anderson Lin, Fu-Chun Huang, Chun-Ren Cheng, Ivan Hua-Shu Wu, Fan Hu, Ching-Hui Lin, Yan-Jie Liao
  • Patent number: 11280786
    Abstract: The present disclosure provides biochips and methods of fabricating biochips. The method includes combining three portions: a transparent substrate, a first substrate with microfluidic channels therein, and a second substrate. Through-holes for inlet and outlet are formed in the transparent substrate or the second substrate. Various non-organic landings with support medium for bio-materials to attach are formed on the first substrate and the second substrate before they are combined. In other embodiments, the microfluidic channel is formed of an adhesion layer between a transparent substrate and a second substrate with landings on the substrates.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: March 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Allen Timothy Chang, Ching-Ray Chen, Yi-Hsien Chang, Yi-Shao Liu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 11267693
    Abstract: A method of manufacturing a semiconductor structure includes providing a first substrate, disposing and patterning a plate over the first substrate, disposing a first sacrificial oxide layer over the plate, forming a plurality of recesses over a surface of the first sacrificial oxide layer, disposing and patterning a membrane over the first sacrificial oxide layer, disposing a second sacrificial oxide layer to surround the membrane and cover the first sacrificial oxide layer; and forming a plurality of conductive plugs passing through the plate or the membrane, wherein the plate includes a semiconductive member and a tensile member, and the semiconductive member is disposed within the tensile member.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Wei-Cheng Shen, Wen-Chien Chen
  • Patent number: 11220422
    Abstract: A micro-electro-mechanical system (MEMS) device includes a substrate, a proof mass, and a piezoelectric bump. The substrate has a surface. The proof mass is suspended over the surface of the substrate, wherein the proof mass is movable with respect to the substrate. The piezoelectric bump is disposed on the surface of the substrate and extends a distance from the surface of the substrate toward the proof mass.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: January 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Fan Hu, Wen-Chuan Tai, Hsiang-Fu Chen, Chun-Ren Cheng
  • Publication number: 20210389273
    Abstract: An integrated circuit device includes a device layer, an interconnect structure, a conductive layer, a passivation layer and a bioFET. The device layer has a first side and a second side and include source/drain regions and a channel region between the source/drain regions. The interconnect structure is disposed at the first side of the device layer. The conductive layer is disposed at the second side of the device layer. The passivation layer is continuously disposed on the conductive layer and the channel region and exposes a portion of the conductive layer. The bioFET includes the source/drain regions, the channel region and a portion of the passivation layer on the channel region.
    Type: Application
    Filed: June 14, 2020
    Publication date: December 16, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Hui Lin, Chun-Ren Cheng, Jui-Cheng Huang, Shih-Fen Huang, Tung-Tsun Chen, Yu-Jie Huang, Fu-Chun Huang
  • Publication number: 20210383972
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a dielectric structure sandwiched between a first electrode and a bottom electrode. A passivation layer overlies the second electrode and the dielectric structure. The passivation layer comprises a horizontal surface vertically below a top surface of the passivation layer. The horizontal surface is disposed above a top surface of the dielectric structure.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Inventors: Anderson Lin, Chun-Ren Cheng, Chi-Yuan Shih, Shih-Fen Huang, Yi-Chuan Teng, Yi Heng Tsai, You-Ru Lin, Yen-Wen Chen, Fu-Chun Huang, Fan Hu, Ching-Hui Lin, Yan-Jie Liao