Patents by Inventor Chun-Te Wu

Chun-Te Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240155809
    Abstract: A two-phase immersion-type heat dissipation structure having fins for facilitating bubble generation is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the plurality of fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins and the fin surface have an included angle therebetween that is from 80 degrees to 100 degrees. A center line average roughness (Ra) of the side surface is less than 3 ?m, and a ten-point average roughness (Rz) of the side surface is not less than 12 ?m.
    Type: Application
    Filed: November 6, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155808
    Abstract: A two-phase immersion-cooling heat-dissipation composite structure is provided. The heat-dissipation composite structure includes a heat dissipation base, a plurality of high-thermal-conductivity fins, and at least one high-porosity solid structure. The heat dissipation base has a first surface and a second surface that face away from each other. The second surface of the heat dissipation base is in contact with a heating element immersed in a two-phase coolant. The first surface of the heat dissipation base is connected to the high-thermal-conductivity fins. The at least one high-porosity solid structure is located at the first surface of the heat dissipation base, and is connected and alternately arranged between side walls of two adjacent ones of the high-thermal-conductivity fins. Each of the high-porosity solid structure includes a plurality of closed holes and a plurality of open holes.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240155807
    Abstract: A two-phase immersion-type heat dissipation structure having acute-angle notched structures is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fin surface is connected with the fins. More than half of the fins are functional fins, and at least one side surface of each of the functional fins has first and second surfaces defined thereon and connected to each other. An angle between the first surface and the fin surface is from 80 degrees to 100 degrees, and an angle between the second surface and the fin surface is less than 75 degrees.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240142180
    Abstract: A two-phase immersion-type heat dissipation structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate and a plurality of non-vertical fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other. The non-fin surface is configured to be in contact with a heating element immersed in a two-phase coolant. The fin surface is connected with the non-vertical fins, a cross-sectional contour of one of the non-vertical fins has a top end point and a bottom end point connected with the fin surface, and the top and bottom end points are opposite to each other. A length of a cross-sectional contour line defined from the top end point to the bottom end point is greater than a perpendicular line length of a perpendicular line defined from the top end point to the fin surface.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240147662
    Abstract: A two-phase immersion-type heat dissipation structure having a porous structure is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, a plurality of fins, and a reinforcement frame. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other, the non-fin surface is configured to be in contact with a heat source immersed in a two-phase coolant, and the fins are integrally formed on the fin surface. A porous structure is covered onto at least one portion of the fin surface and at least one portion of the plurality of fins, and has a porosity of from 10% to 50% and a thickness that is from 0.1 mm to 1 mm. The reinforcement frame is bonded to the heat dissipation substrate and surrounds another one portion of the plurality of fins.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Publication number: 20240142181
    Abstract: A two-phase immersion-type heat dissipation structure having skived fin with high porosity is provided. The two-phase immersion-type heat dissipation structure having skived fin with high porosity includes a porous heat dissipation structure having a total porosity that is equal to or greater than 5%. The porous heat dissipation structure includes a porous substrate and a plurality of porous and skived fins. The porous substrate has a first surface and a second surface that face away from each other. The second surface of the porous substrate is configured to be in contact with a heating element that is immersed in a two-phase coolant. The plurality of porous and skived fins are integrally formed on the first surface of the porous substrate by skiving. A first porosity of the plurality of porous and skived fins is greater than a second porosity of the porous substrate.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 2, 2024
    Inventors: CHUN-TE WU, CHING-MING YANG, YU-WEI CHIU, TZE-YANG YEH
  • Publication number: 20240102741
    Abstract: A heat dissipation structure having a heat pipe is provided. The heat dissipation structure includes a heat dissipation base, a plurality of fins, at least one heat pipe, and at least a first heat dissipation contact material and a second heat dissipation contact material that are different from one another. The heat dissipation base has a first and a second heat dissipation surface opposite to each other. The second heat dissipation surface is connected to the fins. At least one recessed trough is concavely formed on the first heat dissipation surface. The at least one heat pipe is located in the at least one recessed trough. The first and the second heat dissipation contact material are filled in the at least one recessed trough. A melting point of the second heat dissipation contact material is smaller than a melting point of the first heat dissipation contact material.
    Type: Application
    Filed: September 22, 2022
    Publication date: March 28, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Patent number: 11937932
    Abstract: An acute kidney injury predicting system and a method thereof are proposed. A processor reads the data to be tested, the detection data, the machine learning algorithm and the risk probability comparison table from a main memory. The processor trains the detection data according to the machine learning algorithm to generate an acute kidney injury prediction model, and inputs the data to be tested into the acute kidney injury prediction model to generate an acute kidney injury characteristic risk probability and a data sequence table. The data sequence table lists the data to be tested in sequence according to a proportion of each of the data to be tested in the acute kidney injury characteristics. The processor selects one of the medical treatment data from the risk probability comparison table according to the acute kidney injury characteristic risk probability.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: March 26, 2024
    Assignees: TAICHUNG VETERANS GENERAL HOSPITAL, TUNGHAI UNIVERSITY
    Inventors: Chieh-Liang Wu, Chun-Te Huang, Cheng-Hsu Chen, Tsai-Jung Wang, Kai-Chih Pai, Chun-Ming Lai, Min-Shian Wang, Ruey-Kai Sheu, Lun-Chi Chen, Yan-Nan Lin, Chien-Lun Liao, Ta-Chun Hung, Chien-Chung Huang, Chia-Tien Hsu, Shang-Feng Tsai
  • Publication number: 20240085125
    Abstract: An immersion-type heat dissipation structure having high density heat dissipation fins is provided, which includes a heat dissipation substrate and the plurality of sheet-like heat dissipation fins. A thickness of the heat dissipation substrate is from 2 mm to 6 mm, and a bottom surface of the heat dissipation substrate contacts a heating element immersed in a two-phase coolant. The sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. A length, a width, and a height of at least one of the sheet-like heat dissipation fins are from 60 mm to 120 mm, from 0.1 mm to 0.5 mm, and from 3 mm to 10 mm, respectively. Further, a distance between at least two of the sheet-like heat dissipation fins that are arranged in parallel to each other is from 0.1 mm to 0.5 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20240090173
    Abstract: A two-phase immersion-type heat dissipation structure having high density heat dissipation fins is provided. The two-phase immersion-type heat dissipation structure having high density heat dissipation fins includes a heat dissipation substrate, a plurality of sheet-like heat dissipation fins, and a reinforcement structure. A bottom surface of the heat dissipation substrate is in contact with a heating element immersed in a two-phase coolant. The plurality of sheet-like heat dissipation fins are integrally formed on an upper surface of the heat dissipation substrate and arranged in high density. An angle between at least one of the sheet-like heat dissipation fins and the upper surface of the heat dissipation substrate is from 60° to 120°. At least one of the sheet-like heat dissipation fins has a length from 50 mm to 120 mm, a width from 0.1 mm to 0.35 mm, and a height from 2 mm to 8 mm.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Inventors: TZE-YANG YEH, CHING-MING YANG, CHUN-TE WU
  • Publication number: 20240040747
    Abstract: A two-phase immersion-type heat dissipation structure having skived fins is provided. The two-phase immersion-type heat dissipation structure includes an upper cover structure, a lower cover structure, the plurality of skived fins, and a reinforcement frame. The skived fins are integrally formed on an upper surface of the upper cover structure by a skiving process. A bottom surface of the upper cover structure has an upper sintering structure formed thereon, and an upper surface of the lower cover structure has a lower sintering structure formed thereon. A bottom surface of the lower cover structure contacts a heating element immersed in a two-phase coolant. The lower cover structure is correspondingly bonded to the upper cover structure. An inner chamber that is vacuum-sealed is formed between the bottom surface of the upper cover structure and the upper surface of the lower cover structure, and contains liquid therein.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: CHING-MING YANG, CHUN-TE WU, TZE-YANG YEH
  • Patent number: 11761719
    Abstract: A two-phase immersion-type heat dissipation structure having fins with different thermal conductivities is provided. The two-phase immersion-type heat dissipation structure includes a heat dissipation substrate, and a plurality of fins. The heat dissipation substrate has a fin surface and a non-fin surface that face away from each other. The non-fin surface is configured to be in contact with a heating element immersed in a two-phase coolant. The fin surface is connected with the plurality of fins. At least one of the plurality of fins is a functional fin that is made of a single metal material and has two or more thermal conductivities. A thermal conductivity of a lower portion of the functional fin that is connected with the heat dissipation substrate is lower than thermal conductivities of other portions of the functional fin.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: September 19, 2023
    Assignee: AMULAIRE THERMAL TECHNOLOGY, INC.
    Inventors: Ching-Ming Yang, Chun-Te Wu, Tze-Yang Yeh
  • Publication number: 20230219855
    Abstract: A method of preparation of a ceramic slurry for use in 3D printing includes steps of: (A) providing a plasticizer and a disperser and mixing the plasticizer and the disperser evenly; (B) mixing the mixture obtained in step (A) with an adhesive, wherein the adhesive is polyvinyl alcohol; and (C) adding a Yttria-stabilized zirconia powder to the mixture obtained in step (B) to produce, by sufficient blending and deaerating, the ceramic slurry for use in 3D printing. A method of preparation of a ceramic product includes steps of: (A) preparing a ceramic slurry with the method; (B) performing 3D printing with the ceramic slurry to form a primary green body; (C) placing the primary green body in a freezer to undergo a refrigeration process, thereby causing crystallization of polyvinyl alcohol; and (D) thawing the frozen primary green body to form a plastic green body with gel structure.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Inventors: CHUN-TE WU, YANG-KUAO KUO
  • Patent number: 11680291
    Abstract: The present invention discloses a Polymerase Chain Reaction (PCR) apparatus for real-time detecting of one or more fluorescent signals. According to the apparatus, the PCR is performed by controlling heating and cooling intervals of a reagent container receiving space. With the aid of an added specific probe and fluorescent material, as well as a light source and a spectrometer, a generated fluorescent signal is detected. Meanwhile, the apparatus is also pre-loaded with an algorithm configured to analyze and quantify the fluorescent signal in a real-time manner.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: June 20, 2023
    Assignee: CREDO DIAGNOSTICS BIOMEDICAL PTE, LTD.
    Inventors: Ying-Ta Lai, Yu-Cheng Ou, Chun-Te Wu, Yu-Wen Huang, Han-Yi Chen
  • Patent number: 11579840
    Abstract: A method for adjusting sound playback of a portable device for constancy notwithstanding different environments outputs from the portable device detectable audio signals inaudible to user and the device receives reflected audio before the portable device is actually commanded to play an audio file. A list of volume weightings for reflected audio is calculated. Before commencing playback of the audio file, the portable device obtains reference volume weightings from a list according to the current volume setting, and calculates adjustment coefficients for different frequency bands based on weightings of the reference volume list and of the reflected audio list. The audio signals of the audio file are output after adjustment. A portable device is also disclosed.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: February 14, 2023
    Assignee: Nanning FuLian FuGui Precision Industrial Co., Ltd.
    Inventor: Chun-Te Wu
  • Patent number: 11528549
    Abstract: Wireless headphones with battery life effectively extended includes first and second headphones. The first and second headphones each with respective low battery levels remaining or very different battery levels remaining receive audio signals from an electronic device and output the sound of the audio signal after adjustments are applied to volume level and to sound quality on one side or on both sides, to reduce the consumption of battery level. Each of the first and second headphones carries a processor for intercommunication in addition to communication with the electronic device performing playback.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: December 13, 2022
    Assignee: Nanning FuLian FuGui Precision Industrial Co., Ltd.
    Inventor: Chun-Te Wu
  • Publication number: 20220261216
    Abstract: A method for adjusting sound playback of a portable device for constancy notwithstanding different environments outputs from the portable device detectable audio signals inaudible to user and the device receives reflected audio before the portable device is actually commanded to play an audio file. A list of volume weightings for reflected audio is calculated. Before commencing playback of the audio file, the portable device obtains reference volume weightings from a list according to the current volume setting, and calculates adjustment coefficients for different frequency bands based on weightings of the reference volume list and of the reflected audio list. The audio signals of the audio file are output after adjustment. A portable device is also disclosed.
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventor: CHUN-TE WU
  • Patent number: 11354086
    Abstract: A method for adjusting sound playback of a portable device for constancy notwithstanding different environments outputs from the portable device detectable audio signals inaudible to user and the device receives reflected audio before the portable device is actually commanded to play an audio file. A list of volume weightings for reflected audio is calculated. Before commencing playback of the audio file, the portable device obtains reference volume weightings from a list according to the current volume setting, and calculates adjustment coefficients for different frequency bands based on weightings of the reference volume list and of the reflected audio list. The audio signals of the audio file are output after adjustment. A portable device is also disclosed.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: June 7, 2022
    Assignee: Nanning FuLian FuGui Precision Industrial Co., Ltd.
    Inventor: Chun-Te Wu
  • Publication number: 20220124427
    Abstract: Wireless headphones with battery life effectively extended includes first and second headphones. The first and second headphones each with respective low battery levels remaining or very different battery levels remaining receive audio signals from an electronic device and output the sound of the audio signal after adjustments are applied to volume level and to sound quality on one side or on both sides, to reduce the consumption of battery level. Each of the first and second headphones carries a processor for intercommunication in addition to communication with the electronic device performing playback.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Inventor: CHUN-TE WU
  • Patent number: 11265642
    Abstract: Wireless headphones with battery life effectively extended includes first and second headphones. The first and second headphones each with respective low battery levels remaining or very different battery levels remaining receive audio signals from an electronic device and output the sound of the audio signal after adjustments are applied to volume level and to sound quality on one side or on both sides, to reduce the consumption of battery level. Each of the first and second headphones carries a processor for intercommunication in addition to communication with the electronic device performing playback.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: March 1, 2022
    Assignee: NANNING FUGUI PRECISION INDUSTRIAL CO., LTD.
    Inventor: Chun-Te Wu