Patents by Inventor Chun-Yao Yang

Chun-Yao Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950431
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: April 2, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20240084487
    Abstract: A knitted component comprising two yarns, forming at least a heel region of an upper for an article of footwear, where one of the yarns comprises a thermoplastic material. The outer surface may include a fused area comprising a first thermoplastic yarn. The inner surface may be at least partially formed with a second yarn and may substantially exclude the thermoplastic material. There may be a transitional area including a reduced amount of thermoplastic material relative to a fused area. The knitted component may include a cushioning material between layers of the knit element.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Jessica Green, Chun-Ying Hsu, Jaroslav J. Lupinek, Darryl Matthews, William C. McFarland, II, Chun-Yao Tu, Yi-Ning Yang, Cheng-Ying Han
  • Patent number: 11920010
    Abstract: The disclosure discloses a heat-sealable polyester film, including a base layer and a heat-seal layer formed on the base layer. The heat-seal layer includes a physically regenerated polyester resin, a chemically regenerated polyester resin, and a modifier. The heat-sealable temperature of the heat-sealable polyester film is between 100° C. and 230° C.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: March 5, 2024
    Assignee: NAN YA PLASTICS CORPORATION
    Inventors: Wen-Cheng Yang, Te-Chao Liao, Chun-Cheng Yang, Chia-Yen Hsiao, Ching-Yao Yuan
  • Patent number: 11856870
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a magnetic tunnel junction (MTJ), and a top electrode which contacts an end of the MTJ. The top electrode includes a top electrode upper portion and a top electrode lower portion. The width of the top electrode upper portion is larger than the width of the top electrode lower portion. A bottom electrode contacts another end of the MTJ. The top electrode, the MTJ and the bottom electrode form an MRAM.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: December 26, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Yi-Syun Chou, Ko-Wei Lin, Pei-Hsun Kao, Wei Chen, Chia-Fu Cheng, Chun-Yao Yang, Chia-Chang Hsu
  • Publication number: 20230091364
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Patent number: 11545521
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 3, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20220320420
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a magnetic tunnel junction (MTJ), and a top electrode which contacts an end of the MTJ. The top electrode includes a top electrode upper portion and a top electrode lower portion. The width of the top electrode upper portion is larger than the width of the top electrode lower portion. A bottom electrode contacts another end of the MTJ. The top electrode, the MTJ and the bottom electrode form an MRAM.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Yi-Syun Chou, Ko-Wei Lin, Pei-Hsun Kao, Wei Chen, Chia-Fu Cheng, Chun-Yao Yang, Chia-Chang Hsu
  • Patent number: 11404631
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a magnetic tunnel junction (MTJ), and a top electrode which contacts an end of the MTJ. The top electrode includes a top electrode upper portion and a top electrode lower portion. The width of the top electrode upper portion is larger than the width of the top electrode lower portion. A bottom electrode contacts another end of the MTJ. The top electrode, the MTJ and the bottom electrode form an MRAM.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 2, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Yi-Syun Chou, Ko-Wei Lin, Pei-Hsun Kao, Wei Chen, Chia-Fu Cheng, Chun-Yao Yang, Chia-Chang Hsu
  • Publication number: 20210143212
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 13, 2021
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Patent number: 10943948
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: March 9, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20200403144
    Abstract: A magnetoresistive random access memory (MRAM) structure includes a magnetic tunnel junction (MTJ), and a top electrode which contacts an end of the MTJ. The top electrode includes a top electrode upper portion and a top electrode lower portion. The width of the top electrode upper portion is larger than the width of the top electrode lower portion. A bottom electrode contacts another end of the MTJ. The top electrode, the MTJ and the bottom electrode form an MRAM.
    Type: Application
    Filed: July 9, 2019
    Publication date: December 24, 2020
    Inventors: Kuo-Chih Lai, Yi-Syun Chou, Ko-Wei Lin, Pei-Hsun Kao, Wei Chen, Chia-Fu Cheng, Chun-Yao Yang, Chia-Chang Hsu
  • Patent number: 10756128
    Abstract: An integrated circuit device includes a complementary metal oxide semiconductor (CMOS) image sensor. The complementary metal oxide semiconductor (CMOS) image sensor includes a P-N junction photodiode, a transistor gate, a polysilicon plug and a stacked metal layer. The P-N junction photodiode is disposed in a substrate. The transistor gate and the polysilicon plug are disposed on the substrate, wherein the polysilicon plug is directly connected to the P-N junction photodiode. The stacked metal layer connects the polysilicon plug to the transistor gate, wherein the stacked metal layer includes a lower metal layer and an upper metal layer, and the lower metal layer includes a first metal silicide part contacting to the polysilicon plug. The present invention also provides a method of fabricating said integrated circuit device.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: August 25, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kuo-Chih Lai, Shih-Min Chou, Ko-Wei Lin, Chin-Fu Lin, Wei-Chuan Tsai, Chun-Yao Yang, Chia-Fu Cheng, Yi-Syun Chou, Wei Chen
  • Publication number: 20200227471
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Application
    Filed: January 30, 2019
    Publication date: July 16, 2020
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20200212090
    Abstract: An integrated circuit device includes a complementary metal oxide semiconductor (CMOS) image sensor. The complementary metal oxide semiconductor (CMOS) image sensor includes a P-N junction photodiode, a transistor gate, a polysilicon plug and a stacked metal layer. The P-N junction photodiode is disposed in a substrate. The transistor gate and the polysilicon plug are disposed on the substrate, wherein the polysilicon plug is directly connected to the P-N junction photodiode. The stacked metal layer connects the polysilicon plug to the transistor gate, wherein the stacked metal layer includes a lower metal layer and an upper metal layer, and the lower metal layer includes a first metal silicide part contacting to the polysilicon plug. The present invention also provides a method of fabricating said integrated circuit device.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 2, 2020
    Inventors: Kuo-Chih Lai, Shih-Min Chou, Ko-Wei Lin, Chin-Fu Lin, Wei-Chuan Tsai, Chun-Yao Yang, Chia-Fu Cheng, Yi-Syun Chou, Wei Chen
  • Patent number: 10340350
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes an isolation layer, a gate dielectric layer, a tantalum nitride layer, a tantalum oxynitride layer, an n type work function metal layer and a filling metal. The isolation layer is formed on a substrate, and the isolation layer has a first gate trench. The gate dielectric layer is formed in the first gate trench, the tantalum nitride layer is formed on the gate dielectric layer, and the tantalum oxynitride layer is formed on the tantalum nitride layer. The n type work function metal layer is formed on the tantalum oxynitride layer in the first gate trench, and the filling metal is formed on the n type work function metal layer in the first gate trench.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: July 2, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Min Chou, Yun-Tzu Chang, Wei-Ning Chen, Wei-Ming Hsiao, Chia-Chang Hsu, Kuo-Chih Lai, Yang-Ju Lu, Yen-Chen Chen, Chun-Yao Yang
  • Publication number: 20180331193
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes an isolation layer, a gate dielectric layer, a tantalum nitride layer, a tantalum oxynitride layer, an n type work function metal layer and a filling metal. The isolation layer is formed on a substrate, and the isolation layer has a first gate trench. The gate dielectric layer is formed in the first gate trench, the tantalum nitride layer is formed on the gate dielectric layer, and the tantalum oxynitride layer is formed on the tantalum nitride layer. The n type work function metal layer is formed on the tantalum oxynitride layer in the first gate trench, and the filling metal is formed on the n type work function metal layer in the first gate trench.
    Type: Application
    Filed: July 25, 2018
    Publication date: November 15, 2018
    Inventors: Shih-Min Chou, Yun-Tzu Chang, Wei-Ning Chen, Wei-Ming Hsiao, Chia-Chang Hsu, Kuo-Chih Lai, Yang-Ju Lu, Yen-Chen Chen, Chun-Yao Yang
  • Patent number: 10128366
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. The gate structure includes a gate dielectric layer formed over the semiconductor substrate, a gate electrode formed over the gate dielectric layer, and a spacer formed on side surfaces of the gate dielectric layer and the gate electrode. A laterally extending portion of the epitaxial structure extends laterally at an area below a top surface of the semiconductor substrate in a direction toward an area below the gate structure. A lateral end of the laterally extending portion is below the spacer.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: November 13, 2018
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Yu-Ying Lin, Kuan Hsuan Ku, I-Cheng Hu, Chueh-Yang Liu, Shui-Yen Lu, Yu Shu Lin, Chun Yao Yang, Yu-Ren Wang, Neng-Hui Yang
  • Publication number: 20180261675
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes an isolation layer, a gate dielectric layer, a tantalum nitride layer, a tantalum oxynitride layer, an n type work function metal layer and a filling metal. The isolation layer is formed on a substrate, and the isolation layer has a first gate trench. The gate dielectric layer is formed in the first gate trench, the tantalum nitride layer is formed on the gate dielectric layer, and the tantalum oxynitride layer is formed on the tantalum nitride layer. The n type work function metal layer is formed on the tantalum oxynitride layer in the first gate trench, and the filling metal is formed on the n type work function metal layer in the first gate trench.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Shih-Min Chou, Yun-Tzu Chang, Wei-Ning Chen, Wei-Ming Hsiao, Chia-Chang Hsu, Kuo-Chih Lai, Yang-Ju Lu, Yen-Chen Chen, Chun-Yao Yang
  • Patent number: 10074725
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The semiconductor structure includes an isolation layer, a gate dielectric layer, a tantalum nitride layer, a tantalum oxynitride layer, an n type work function metal layer and a filling metal. The isolation layer is formed on a substrate, and the isolation layer has a first gate trench. The gate dielectric layer is formed in the first gate trench, the tantalum nitride layer is formed on the gate dielectric layer, and the tantalum oxynitride layer is formed on the tantalum nitride layer. The n type work function metal layer is formed on the tantalum oxynitride layer in the first gate trench, and the filling metal is formed on the n type work function metal layer in the first gate trench.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 11, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Min Chou, Yun-Tzu Chang, Wei-Ning Chen, Wei-Ming Hsiao, Chia-Chang Hsu, Kuo-Chih Lai, Yang-Ju Lu, Yen-Chen Chen, Chun-Yao Yang
  • Publication number: 20180158943
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure formed over the semiconductor substrate, and an epitaxial structure formed partially within the semiconductor substrate. The gate structure includes a gate dielectric layer formed over the semiconductor substrate, a gate electrode formed over the gate dielectric layer, and a spacer formed on side surfaces of the gate dielectric layer and the gate electrode. A laterally extending portion of the epitaxial structure extends laterally at an area below a top surface of the semiconductor substrate in a direction toward an area below the gate structure. A lateral end of the laterally extending portion is below the spacer.
    Type: Application
    Filed: February 6, 2018
    Publication date: June 7, 2018
    Inventors: Yu-Ying Lin, Kuan Hsuan KU, I-Cheng Hu, Chueh-Yang Liu, Shui-Yen Lu, Yu Shu LIN, Chun Yao YANG, Yu-Ren Wang, Neng-Hui Yang