Patents by Inventor Chung-Chi Ko

Chung-Chi Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12278176
    Abstract: An integrated circuit structure includes a substrate, a transistor, a first dielectric layer, a metal contact, a first low-k dielectric layer, a second dielectric layer, and a first metal feature. The transistor is over the substrate. The first dielectric layer is over the transistor. The metal contact is in the first dielectric layer and electrically connected to the transistor. The first low-k dielectric layer is over the first dielectric layer. The second dielectric layer is over the first low-k dielectric layer and has a dielectric constant higher than a dielectric constant of the first low-k dielectric layer. The first metal feature extends through both second dielectric layer and the first low-k dielectric layer to the metal contact.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: April 15, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen Pan, Chung-Chi Ko
  • Patent number: 12261042
    Abstract: A method includes forming a silicon layer on a wafer, forming an oxide layer in contact with the silicon layer, and, after the oxide layer is formed, annealing the wafer in an environment comprising ammonia (NH3) to form a dielectric barrier layer between, and in contact with, the silicon layer and the oxide layer. The dielectric barrier layer comprises silicon and nitrogen.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: March 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Patent number: 12255138
    Abstract: A method of forming an interconnect structure includes the following steps. A first etching stop layer, a first dielectric layer, a second etching stop layer, an insert layer and a second dielectric layer are deposited over the second etching stop layer are deposited over a substrate. The second dielectric layer, the insert layer, the second etching stop layer, the first dielectric layer and the first etching stop layer are patterned thereby forming a trench opening and a via hole. A conductive feature is filled in the trench opening and the via hole thereby forming a conductive line in the second dielectric layer and the insert layer and a via in the first etching stop layer and the first dielectric layer. A material of the insert layer is different from the second dielectric layer and the second etching stop layer.
    Type: Grant
    Filed: September 26, 2023
    Date of Patent: March 18, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee
  • Patent number: 12255241
    Abstract: Embodiments of the present disclosure relate to a method of forming a low-k dielectric material, for example, a low-k gate spacer layer in a FinFET device. The low-k dielectric material may be formed using a precursor having a general chemical structure comprising at least one carbon atom bonded between two silicon atoms. A target k-value of the dielectric material may be achieved by controlling carbon concentration in the dielectric material.
    Type: Grant
    Filed: April 18, 2023
    Date of Patent: March 18, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Patent number: 12176206
    Abstract: Semiconductor device structures having dielectric features and methods of forming dielectric features are described herein. In some examples, the dielectric features are formed by an ALD process followed by a varying temperature anneal process. The dielectric features can have high density, low carbon concentration, and lower k-value. The dielectric features formed according to the present disclosure has improved resistance against etching chemistry, plasma damage, and physical bombardment in subsequent processes while maintaining a lower k-value for target capacitance efficiency.
    Type: Grant
    Filed: June 9, 2023
    Date of Patent: December 24, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu Ling Liao, Chung-Chi Ko, Wan-Yi Kao
  • Publication number: 20240395699
    Abstract: An integrated circuit structure includes a substrate, a transistor, a first dielectric layer, a metal contact, a first low-k dielectric layer, a second dielectric layer, and a first metal feature. The transistor is over the substrate. The first dielectric layer is over the transistor. The metal contact is in the first dielectric layer and electrically connected to the transistor. The first low-k dielectric layer is over the first dielectric layer. The second dielectric layer is over the first low-k dielectric layer and has a dielectric constant higher than a dielectric constant of the first low-k dielectric layer. The first metal feature extends through both second dielectric layer and the first low-k dielectric layer to the metal contact.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 28, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Wen PAN, Chung-Chi KO
  • Publication number: 20240387238
    Abstract: An integrated circuit structure includes a bulk semiconductor region, a first semiconductor strip over and connected to the bulk semiconductor region, and a dielectric layer including silicon oxide therein. Carbon atoms are doped in the silicon oxide. The dielectric layer includes a horizontal portion over and contacting a top surface of the bulk semiconductor region, and a vertical portion connected to an end of the horizontal portion. The vertical portion contacts a sidewall of a lower portion of the first semiconductor strip. A top portion of the first semiconductor strip protrudes higher than a top surface of the vertical portion to form a semiconductor fin. The horizontal portion and the vertical portion have a same thickness. A gate stack extends on a sidewall and a top surface of the semiconductor fin.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Publication number: 20240387384
    Abstract: A method includes depositing a dielectric layer over a substrate, and etching the dielectric layer to form an opening and to expose a first conductive feature underlying the dielectric layer. The dielectric layer is formed using a precursor including nitrogen therein. The method further includes depositing a sacrificial spacer layer extending into the opening, and patterning the sacrificial spacer layer to remove a bottom portion of the sacrificial spacer layer. A vertical portion of the sacrificial spacer layer in the opening and on sidewalls of the dielectric layer is left to form a ring. A second conductive feature is formed in the opening. The second conductive feature is encircled by the ring, and is over and electrically coupled to the first conductive feature. At least a portion of the ring is removed to form an air spacer.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Inventors: Ming-Tsung Lee, Yi-Wen Pan, Tzu-Nung Lu, You-Lan Li, Chung-Chi Ko
  • Patent number: 12148696
    Abstract: An integrated circuit structure includes a first low-k dielectric layer having a first k value, and a second low-k dielectric layer having a second k value lower than the first k value. The second low-k dielectric layer is overlying the first low-k dielectric layer. A dual damascene structure includes a via with a portion in the first low-k dielectric layer, and a metal line over and joined to the via. The metal line includes a portion in the second low-k dielectric layer.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Chun Wang, Chung-Chi Ko, Po-Cheng Shih
  • Patent number: 12148652
    Abstract: An integrated circuit structure includes a bulk semiconductor region, a first semiconductor strip over and connected to the bulk semiconductor region, and a dielectric layer including silicon oxide therein. Carbon atoms are doped in the silicon oxide. The dielectric layer includes a horizontal portion over and contacting a top surface of the bulk semiconductor region, and a vertical portion connected to an end of the horizontal portion. The vertical portion contacts a sidewall of a lower portion of the first semiconductor strip. A top portion of the first semiconductor strip protrudes higher than a top surface of the vertical portion to form a semiconductor fin. The horizontal portion and the vertical portion have a same thickness. A gate stack extends on a sidewall and a top surface of the semiconductor fin.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Publication number: 20240379350
    Abstract: A method includes forming a silicon layer on a wafer, forming an oxide layer in contact with the silicon layer, and, after the oxide layer is formed, annealing the wafer in an environment comprising ammonia (NH3) to form a dielectric barrier layer between, and in contact with, the silicon layer and the oxide layer. The dielectric barrier layer comprises silicon and nitrogen.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Publication number: 20240249947
    Abstract: A device includes a first dielectric layer, a first conductor, an etch stop layer, a second dielectric layer, and a second conductor. The first conductor is in the first dielectric layer. The etch stop layer is over the first dielectric layer. The etch stop layer has a first surface facing the first dielectric layer and a second surface facing away from the first dielectric layer, and a concentration of carbon in the etch stop layer periodically varies from the first surface to the second surface. The second dielectric layer is over the etch stop layer. The second conductor is in the second dielectric layer and the etch stop layer and electrically connected to the first conductor.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Yun PENG, Chung-Chi KO, Keng-Chu LIN
  • Publication number: 20240213161
    Abstract: A semiconductor device including a substrate, a low-k dielectric layer, a cap layer, and a conductive layer is provided. The low-k dielectric layer is disposed over the substrate. The cap layer is disposed on the low-k dielectric layer, wherein a carbon atom content of the cap layer is greater than a carbon atom content of the low-k dielectric layer. The conductive layer is disposed in the cap layer and the low-k dielectric layer.
    Type: Application
    Filed: February 5, 2024
    Publication date: June 27, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Ming-Tsung Lee
  • Publication number: 20240178059
    Abstract: A structure includes a first conductive feature, a first etch stop layer over the first conductive feature, a dielectric layer over the first etch stop layer, and a second conductive feature in the dielectric layer and the first etch stop layer. The second conductive feature is over and contacting the first conductive feature. An air spacer encircles the second conductive feature, and sidewalls of the second conductive feature are exposed to the air spacer. A protection ring further encircles the second conductive feature, and the protection ring fully separates the second conductive feature from the air spacer.
    Type: Application
    Filed: February 2, 2024
    Publication date: May 30, 2024
    Inventors: Chia Cheng Chou, Chung-Chi Ko, Tze-Liang Lee
  • Publication number: 20240178321
    Abstract: A method of forming a semiconductor device includes forming a fin protruding above a substrate; forming a liner over the fin; performing a surface treatment process to convert an upper layer of the liner distal to the fin into a conversion layer, the conversion layer comprising an oxide or a nitride of the liner; forming isolation regions on opposing sides of the fin after the surface treatment process; forming a gate dielectric over the conversion layer after forming the isolation regions; and forming a gate electrode over the fin and over the gate dielectric.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 30, 2024
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Publication number: 20240153814
    Abstract: Methods of forming a semiconductor device structure are described. In some embodiments, the method includes forming an interconnect structure over a substrate. The forming the interconnect structure over the semiconductor device structure includes forming a dielectric layer, then performing an annealing process, then forming one or more openings in the dielectric layer, then performing a first ultraviolet (UV) curing process, and then forming conductive features in the one or more openings.
    Type: Application
    Filed: January 6, 2024
    Publication date: May 9, 2024
    Inventors: Yi-Wen PAN, You-Lan LI, Chung-Chi KO
  • Publication number: 20240153828
    Abstract: An embodiment is a device including a first fin extending from a substrate, a first gate stack over and along sidewalls of the first fin, a first gate spacer disposed along a sidewall of the first gate stack, a first epitaxial source/drain region in the first fin and adjacent the first gate spacer, the first epitaxial source/drain region, and a protection layer between the first epitaxial source/drain region and the first gate spacer and between the first gate spacer and the first gate stack.
    Type: Application
    Filed: January 18, 2024
    Publication date: May 9, 2024
    Inventors: Shu Ling Liao, Chung-Chi Ko
  • Patent number: 11948841
    Abstract: A method includes forming a dummy gate stack over a semiconductor region of a wafer, and depositing a gate spacer layer using Atomic Layer Deposition (ALD) on a sidewall of the dummy gate stack. The depositing the gate spacer layer includes performing an ALD cycle to form a dielectric atomic layer. The ALD cycle includes introducing silylated methyl to the wafer, purging the silylated methyl, introducing ammonia to the wafer, and purging the ammonia.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Patent number: 11935752
    Abstract: A device includes a first dielectric layer, a first conductor, an etch stop layer, a second dielectric layer, and a second conductor. The first conductor is in the first dielectric layer. The etch stop layer is over the first dielectric layer. The etch stop layer has a first surface facing the first dielectric layer and a second surface facing away from the first dielectric layer, and a concentration of carbon in the etch stop layer periodically varies from the first surface to the second surface. The second dielectric layer is over the etch stop layer. The second conductor is in the second dielectric layer and the etch stop layer and electrically connected to the first conductor.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Yun Peng, Chung-Chi Ko, Keng-Chu Lin
  • Patent number: 11929329
    Abstract: A semiconductor device including a substrate, a low-k dielectric layer, a cap layer, and a conductive layer is provided. The low-k dielectric layer is disposed over the substrate. The cap layer is disposed on the low-k dielectric layer, wherein a carbon atom content of the cap layer is greater than a carbon atom content of the low-k dielectric layer. The conductive layer is disposed in the cap layer and the low-k dielectric layer.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Chou, Chung-Chi Ko, Tze-Liang Lee, Ming-Tsung Lee