Patents by Inventor Chung-Chiang WU

Chung-Chiang WU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190371674
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 10497811
    Abstract: A method includes forming a first semiconductor fin protruding from a substrate and forming a gate stack over the first semiconductor fin. Forming the gate stack includes depositing a gate dielectric layer over the first semiconductor fin, depositing a first seed layer over the gate dielectric layer, depositing a second seed layer over the first seed layer, wherein the second seed layer has a different structure than the first seed layer, and depositing a conductive layer over the second seed layer, wherein the first seed layer, the second seed layer, and the conductive layer include the same conductive material. The method also includes forming source and drain regions adjacent the gate stack.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: December 3, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Chia-Ching Lee, Chung-Chiang Wu, Ching-Hwanq Su
  • Publication number: 20190333808
    Abstract: A method includes forming an opening in a dielectric layer, depositing a seed layer in the opening, wherein first portions of the seed layer have a first concentration of impurities, exposing the first portions of the seed layer to a plasma, wherein after exposure to the plasma the first portions have a second concentration of impurities that is less than the first concentration of impurities, and filling the opening with a conductive material to form a conductive feature. In an embodiment, the seed layer includes tungsten, and the conductive material includes tungsten. In an embodiment, the impurities include boron.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Chung-Chiang Wu, Hsueh Wen Tsau, Chia-Ching Lee, Cheng-Lung Hung, Ching-Hwanq Su
  • Publication number: 20190273145
    Abstract: Certain embodiments of a semiconductor device and a method of forming a semiconductor device comprise forming a high-k gate dielectric layer over a short channel semiconductor fin. A work function metal layer is formed over the high-k gate dielectric layer. A seamless metal fill layer is conformally formed over the work function metal layer.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hang CHIU, Chung-Chiang WU, Ching-Hwanq SU, Da-Yuan LEE, Ji-Cheng CHEN, Kuan-Ting LIU, Tai-Wei HWANG, Chung-Yi SU
  • Publication number: 20190259861
    Abstract: A method includes forming a dummy gate structure over a semiconductor fin, forming a dielectric layer on opposing sides of the dummy gate structure, and removing the dummy gate structure to form a recess in the dielectric layer. The method further includes forming a gate dielectric layer and at least one conductive layer successively over sidewalls and a bottom of the recess, and treating the gate dielectric layer and the at least one conductive layer with a chemical containing fluoride (F).
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Ching-Hwanq Su
  • Publication number: 20190259853
    Abstract: Gate structures and methods of forming the gate structures are described. In some embodiments, a method includes forming source/drain regions in a substrate, and forming a gate structure between the source/drain regions. The gate structure includes a gate dielectric layer over the substrate, a work function tuning layer over the gate dielectric layer, a metal-containing compound over the work function tuning layer, and a metal over the metal-containing compound, wherein the metal-containing compound comprises the metal as an element of the compound.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Hsueh Wen Tsau
  • Patent number: 10283619
    Abstract: Gate structures and methods of forming the gate structures are described. In some embodiments, a method includes forming source/drain regions in a substrate, and forming a gate structure between the source/drain regions. The gate structure includes a gate dielectric layer over the substrate, a work function tuning layer over the gate dielectric layer, a metal-containing compound over the work function tuning layer, and a metal over the metal-containing compound, wherein the metal-containing compound comprises the metal as an element of the compound.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: May 7, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Hsueh Wen Tsau
  • Patent number: 10276690
    Abstract: A method includes forming a dummy gate structure over a semiconductor fin, forming a dielectric layer on opposing sides of the dummy gate structure, and removing the dummy gate structure to form a recess in the dielectric layer. The method further includes forming a gate dielectric layer and at least one conductive layer successively over sidewalls and a bottom of the recess, and treating the gate dielectric layer and the at least one conductive layer with a chemical containing fluoride (F).
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 10269569
    Abstract: A semiconductor device and method of manufacture are provided. In an embodiment a metal layer is formed over a substrate using a fluorine-free deposition process, a nucleation layer is formed over the metal layer using a fluorine included deposition process, and a fill material is formed to fill an opening and form a gate stack.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Shiung Tsai, Chung-Chiang Wu, Wei-Fan Liao, Han-Ti Hsiaw
  • Publication number: 20190096678
    Abstract: A semiconductor device and method of manufacture are provided. In an embodiment a metal layer is formed over a substrate using a fluorine-free deposition process, a nucleation layer is formed over the metal layer using a fluorine included deposition process, and a fill material is formed to fill an opening and form a gate stack.
    Type: Application
    Filed: November 30, 2018
    Publication date: March 28, 2019
    Inventors: Jung-Shiung Tsai, Chung-Chiang Wu, Wei-Fan Liao, Han-Ti Hsiaw
  • Publication number: 20190067279
    Abstract: A method of forming a semiconductor device includes forming a plurality of fins on a substrate, forming a polysilicon gate structure, and replacing the polysilicon gate structure with a metal gate structure. Replacing the polysilicon gate structure includes depositing a work function metal layer over the plurality of fins, forming a metal oxide layer over the work function metal layer, and depositing a first metal layer over the metal oxide layer. A first portion of the metal oxide layer is formed within an area between adjacent fins from among the plurality of fins. An example benefit includes reduced diffusion of unwanted and/or detrimental elements from the first metal layer into its underlying layers and consequently, the reduction of the negative impact of these unwanted and/or detrimental elements on the semiconductor device performance.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh Wen TSAU, Chia-Ching LEE, Chung-Chiang WU, Da-Yuan LEE
  • Publication number: 20190035916
    Abstract: A method includes forming a dummy gate structure over a semiconductor fin, forming a dielectric layer on opposing sides of the dummy gate structure, and removing the dummy gate structure to form a recess in the dielectric layer. The method further includes forming a gate dielectric layer and at least one conductive layer successively over sidewalls and a bottom of the recess, and treating the gate dielectric layer and the at least one conductive layer with a chemical containing fluoride (F).
    Type: Application
    Filed: September 14, 2017
    Publication date: January 31, 2019
    Inventors: Shih-Hang Chiu, Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 10170417
    Abstract: A semiconductor structure includes a substrate, a dielectric layer, a metal layer, and a tungsten layer. The dielectric layer is on the substrate and has a recess feature therein. The metal layer is in the recess feature. The metal layer has an oxygen content less than about 0.1 atomic percent. The tungsten layer is in the recess feature and in contact with the metal layer.
    Type: Grant
    Filed: November 19, 2017
    Date of Patent: January 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Chiang Wu, Chia-Ching Lee, Hsueh-Wen Tsau, Chun-Yuan Chou, Cheng-Yen Tsai, Da-Yuan Lee, Ming-Hsing Tsai
  • Patent number: 10128237
    Abstract: A method of forming a semiconductor device includes forming a plurality of fins on a substrate, forming a polysilicon gate structure, and replacing the polysilicon gate structure with a metal gate structure. Replacing the polysilicon gate structure includes depositing a work function metal layer over the plurality of fins, forming a metal oxide layer over the work function metal layer, and depositing a first metal layer over the metal oxide layer. A first portion of the metal oxide layer is formed within an area between adjacent fins from among the plurality of fins. An example benefit includes reduced diffusion of unwanted and/or detrimental elements from the first metal layer into its underlying layers and consequently, the reduction of the negative impact of these unwanted and/or detrimental elements on the semiconductor device performance.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: November 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh Wen Tsau, Chia-Ching Lee, Chung-Chiang Wu, Da-Yuan Lee
  • Publication number: 20180261459
    Abstract: A system for providing a pre-deposition treatment (e.g., of a work-function layer) to accomplish work function tuning. In various embodiments, a gate dielectric layer is formed over a substrate, and a work-function metal layer is deposited over the gate dielectric layer. In some embodiments, a first in-situ process including a pre-treatment process of the work-function metal layer is performed. By way of example, the pre-treatment process removes an oxidized layer of the work-function metal layer to form a treated work-function metal layer. In some embodiments, after performing the first in-situ process, a second in-situ process including a deposition process of another metal layer over the treated work-function metal layer is performed.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Inventors: Cheng-Yen TSAI, Hsin-Yi LEE, Chung-Chiang WU, Da-Yuan LEE, Weng CHANG, Ming-Hsing TSAI
  • Publication number: 20180175201
    Abstract: A method includes forming a first semiconductor fin protruding from a substrate and forming a gate stack over the first semiconductor fin. Forming the gate stack includes depositing a gate dielectric layer over the first semiconductor fin, depositing a first seed layer over the gate dielectric layer, depositing a second seed layer over the first seed layer, wherein the second seed layer has a different structure than the first seed layer, and depositing a conductive layer over the second seed layer, wherein the first seed layer, the second seed layer, and the conductive layer include the same conductive material. The method also includes forming source and drain regions adjacent the gate stack.
    Type: Application
    Filed: March 30, 2017
    Publication date: June 21, 2018
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Chia-Ching Lee, Chung-Chiang Wu, Ching-Hwanq Su
  • Patent number: 9991362
    Abstract: In a method of manufacturing a tungsten layer by an atomic layer deposition, a seed layer on an underlying layer is formed on a substrate by supplying a boron containing gas and a dilute gas, and a tungsten layer is formed on the seed layer by supplying a tungsten containing gas. A flow ratio of a flow amount of the boron containing gas to a total flow amount of the boron containing gas and the dilute gas is in a range from 1/21 to 1/4.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 5, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Sheng Wang, Chi-Cheng Hung, Chia-Ching Lee, Chung-Chiang Wu
  • Publication number: 20180151373
    Abstract: A semiconductor device and method of manufacture are provided. In an embodiment a metal layer is formed over a substrate using a fluorine-free deposition process, a nucleation layer is formed over the metal layer using a fluorine included deposition process, and a fill material is formed to fill an opening and form a gate stack.
    Type: Application
    Filed: October 13, 2017
    Publication date: May 31, 2018
    Inventors: Jung-Shiung Tsai, Chung-Chiang Wu, Wei-Fan Liao, Han-Ti Hsiaw
  • Publication number: 20180145151
    Abstract: Gate structures and methods of forming the gate structures are described. In some embodiments, a method includes forming source/drain regions in a substrate, and forming a gate structure between the source/drain regions. The gate structure includes a gate dielectric layer over the substrate, a work function tuning layer over the gate dielectric layer, a metal-containing compound over the work function tuning layer, and a metal over the metal-containing compound, wherein the metal-containing compound comprises the metal as an element of the compound.
    Type: Application
    Filed: January 2, 2018
    Publication date: May 24, 2018
    Inventors: Chung-Chiang Wu, Chia-Ching Lee, Da-Yuan Lee, Hsueh Wen Tsau
  • Patent number: 9978601
    Abstract: A method and structure for providing a pre-deposition treatment (e.g., of a work-function layer) to accomplish work function tuning. In various embodiments, a gate dielectric layer is formed over a substrate, and a work-function metal layer is deposited over the gate dielectric layer. In some embodiments, a first in-situ process including a pre-treatment process of the work-function metal layer is performed. By way of example, the pre-treatment process removes an oxidized layer of the work-function metal layer to form a treated work-function metal layer. In some embodiments, after performing the first in-situ process, a second in-situ process including a deposition process of another metal layer over the treated work-function metal layer is performed.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: May 22, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Hsin-Yi Lee, Chung-Chiang Wu, Da-Yuan Lee, Weng Chang, Ming-Hsing Tsai