Patents by Inventor Chung-Chyung Han

Chung-Chyung Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9257410
    Abstract: Embodiments of the present disclosure provide an apparatus comprising a semiconductor substrate having a first surface, a second surface that is disposed opposite to the first surface, wherein at least a portion of the first surface is recessed to form a recessed region of the semiconductor substrate, and one or more vias formed in the recessed region of the semiconductor substrate to provide an electrical or thermal pathway between the first surface and the second surface of the semiconductor substrate, and a die coupled to the semiconductor substrate, the die being electrically coupled to the one or more vias formed in the recessed region of the semiconductor substrate. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 9, 2016
    Assignee: Marvell World Trade Ltd.
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Publication number: 20150155202
    Abstract: Embodiments of the present disclosure provide a chip that comprises a base metal layer formed over a first semiconductor die and a first metal layer formed over the base metal layer. The first metal layer includes a plurality of islands configured to route at least one of (i) a ground signal or (ii) a power signal in the chip. The chip further comprises a second metal layer formed over the first metal layer. The second metal layer includes a plurality of islands configured to route at least one of (i) the ground signal or (ii) the power signal in the chip.
    Type: Application
    Filed: February 3, 2015
    Publication date: June 4, 2015
    Inventors: Sehat Sutardja, Chung Chyung Han, Weidan Li, Shuhua Yu, Chuan-Cheng Cheng, Albert Wu
  • Patent number: 9034730
    Abstract: Embodiments of the present disclosure provide a method, comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming one or more vias in the first surface of the semiconductor substrate, the one or more vias initially passing through only a portion of the semiconductor substrate without reaching the second surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, the redistribution layer being electrically coupled to the one or more vias, coupling one or more dies to the redistribution layer, forming a molding compound to encapsulate at least a portion of the one or more dies, and recessing the second surface of the semiconductor substrate to expose the one or more vias. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: May 19, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Patent number: 8946890
    Abstract: Embodiments of the present disclosure provide a chip that comprises a base metal layer formed over a first semiconductor die and a first metal layer formed over the base metal layer. The first metal layer includes a plurality of islands configured to route at least one of (i) a ground signal or (ii) a power signal in the chip. The chip further comprises a second metal layer formed over the first metal layer. The second metal layer includes a plurality of islands configured to route at least one of (i) the ground signal or (ii) the power signal in the chip.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: February 3, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Sehat Sutardja, Chung Chyung Han, Weidan Li, Shuhua Yu, Chuan-Cheng Cheng, Albert Wu
  • Publication number: 20140124961
    Abstract: Embodiments of the present disclosure provide a method comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, electrically coupling one or more dies to the redistribution layer, forming a molding compound on the semiconductor substrate, recessing the second surface of the semiconductor substrate, forming one or more channels through the recessed second surface of the semiconductor substrate to expose the redistribution layer; and forming one or more package interconnect structures in the one or more channels, the one or more package interconnect structures being electrically coupled to the redistribution layer, the one or more package interconnect structures to route electrical signals of the one or more dies. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: Marvell World Trade Ltd.
    Inventors: Albert WU, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Publication number: 20120098127
    Abstract: Embodiments of the present disclosure provide a chip that comprises a base metal layer formed over a first semiconductor die and a first metal layer formed over the base metal layer. The first metal layer includes a plurality of islands configured to route at least one of (i) a ground signal or (ii) a power signal in the chip. The chip further comprises a second metal layer formed over the first metal layer. The second metal layer includes a plurality of islands configured to route at least one of (i) the ground signal or (ii) the power signal in the chip.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 26, 2012
    Inventors: Sehat Sutardja, Chung Chyung Han, Weidan Li, Shuhua Yu, Chuan-Cheng Cheng, Albert Wu
  • Publication number: 20110186960
    Abstract: Embodiments of the present disclosure provide a method comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, electrically coupling one or more dies to the redistribution layer, forming a molding compound on the semiconductor substrate, recessing the second surface of the semiconductor substrate, forming one or more channels through the recessed second surface of the semiconductor substrate to expose the redistribution layer; and forming one or more package interconnect structures in the one or more channels, the one or more package interconnect structures being electrically coupled to the redistribution layer, the one or more package interconnect structures to route electrical signals of the one or more dies. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 14, 2011
    Publication date: August 4, 2011
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Publication number: 20110186992
    Abstract: Embodiments of the present disclosure provide a method, comprising providing a semiconductor substrate having (i) a first surface and (ii) a second surface that is disposed opposite to the first surface, forming one or more vias in the first surface of the semiconductor substrate, the one or more vias initially passing through only a portion of the semiconductor substrate without reaching the second surface, forming a dielectric film on the first surface of the semiconductor substrate, forming a redistribution layer on the dielectric film, the redistribution layer being electrically coupled to the one or more vias, coupling one or more dies to the redistribution layer, forming a molding compound to encapsulate at least a portion of the one or more dies, and recessing the second surface of the semiconductor substrate to expose the one or more vias. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Publication number: 20110186998
    Abstract: Embodiments of the present disclosure provide an apparatus comprising a semiconductor substrate having a first surface, a second surface that is disposed opposite to the first surface, wherein at least a portion of the first surface is recessed to form a recessed region of the semiconductor substrate, and one or more vias formed in the recessed region of the semiconductor substrate to provide an electrical or thermal pathway between the first surface and the second surface of the semiconductor substrate, and a die coupled to the semiconductor substrate, the die being electrically coupled to the one or more vias formed in the recessed region of the semiconductor substrate. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 24, 2011
    Publication date: August 4, 2011
    Inventors: Albert Wu, Roawen Chen, Chung Chyung Han, Shiann-Ming Liou, Chien-Chuan Wei, Runzi Chang, Scott Wu, Chuan-Cheng Cheng
  • Patent number: 6127710
    Abstract: A CMOS Structure is disclosed wherein two adjacent transistors of opposite conductivity each have a gate above their respective channel regions. Spacers are absent from the gate of one of the transistors. The structure is also characterized by lightly doped regions.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: October 3, 2000
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Jen Chien, Chung-Chyung Han, Chuen-Der Lien
  • Patent number: 6063676
    Abstract: A semiconductor substrate having a surface, a field oxide region at the surface and a gate structure above the surface are provided. A sidewall spacer is formed adjacent to the gate structure and a polysilicon layer is formed above the substrate, the polysilicon layer having raised first and second portions above the gate structure and field oxide region, respectively. A masking layer is formed above the polysilicon layer and then blanket etched to expose the raised first and second portions of the polysilicon layer which are subsequently removed to form a raised source/drain region from the polysilicon layer. Since the raised source/drain region is fabricated without using photolithography, high density MOSFETs are readily fabricated.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: May 16, 2000
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Chyung Han, Ken-Chuen Mui
  • Patent number: 6043129
    Abstract: A semiconductor substrate having a surface, a planarized field oxide region at the surface and a gate structure overlying the surface are provided. A sidewall spacer is formed adjacent to the gate structure and a polysilicon layer is formed overlying the substrate, the polysilicon layer having a raised first portion overlying the gate structure. A masking layer is formed overlying the polysilicon layer and then blanket etched to expose the raised first portion of the polysilicon layer which is subsequently removed. Since the raised first portion of the polysilicon layer is removed without using photolithography, high density MOSFETs are readily fabricated.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: March 28, 2000
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Chyung Han, Ken-Chuen Mui
  • Patent number: 6017785
    Abstract: A method of improving latch-up immunity and interwell isolation in a semiconductor device is provided. In one embodiment, an implant mask which has a variable permeability to implanted impurities is formed on the surface of a substrate having a first dopant region. A first portion of the implant mask overlies a first portion of the first dopant region. The structure is subjected to high energy implantation which forms a heavily doped region. A first portion of the heavily doped region is located along the lower boundary of the first dopant region. A second portion of the heavily doped region which extends along a side boundary of the first dopant region is formed by impurity ions which pass through the first portion of the implant mask. The heavily doped region improves latch-up immunity and interwell isolation without degrading threshold voltage tolerance.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: January 25, 2000
    Assignee: Integrated Device Technology, Inc.
    Inventors: Chung-Chyung Han, Jeong Yeol Choi, Cheun-Der Lien
  • Patent number: 5831313
    Abstract: A structure for improving latch-up immunity and interwell isolation in a semiconductor device is provided. In one embodiment, a substrate has an upper surface and a first dopant region formed therein. The first dopant region has a lower boundary located below an upper surface of the substrate and a side boundary extending from the upper surface of the substrate to the lower boundary of the first dopant region. A heavily doped region having a first portion and a second portion located along the lower boundary and the side boundary of the first dopant region, respectively, has a substantially uniform dopant concentration greater than a dopant concentration of the first dopant region. The heavily doped region improves latch-up immunity and interwell isolation without degrading threshold voltage tolerance.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: November 3, 1998
    Assignee: Integrated Device Technology, Inc.
    Inventors: Chung-Chyung Han, Jeong Yeol Choi, Cheun-Der Lien
  • Patent number: 5793088
    Abstract: A method and structure for controlling the threshold voltage of a MOSFET is provided. The method compensates for the edge effect associated with prior art halo implants by providing an edge threshold voltage implant (the VT implant) which passes impurities through dielectric spacers, through the underlying source/drain regions and into the edges of the halo regions which lie in the channel. The VT implant reduces junction capacitance and does not degrade punchthrough voltage.
    Type: Grant
    Filed: June 18, 1996
    Date of Patent: August 11, 1998
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Jen Chien, Chung Chyung Han, Chuen-Der Lien
  • Patent number: 5750424
    Abstract: A process for fabricating a CMOS structure using a single masking step to define lightly-doped source and drain regions for both N- and P-channel devices. The process forms disposable spacers adjacent to gate structures and at least one retrograde well. Retrograde wells are formed using one or more charged ions at different energy levels. In addition, heavily-doped source and drain regions are formed using blanket implants of two different conductivities into a semiconductor substrate having two contiguous wells of opposite conductivity type. By blanket implanting a first dopant into both wells, and then selectively implanting a second dopant, the diffusion of the second dopant is partially suppressed by the first dopant. The partial suppression of first dopant results in shallow implants being formed. Also disclosed is a process for forming contact openings and contact implants.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: May 12, 1998
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Jen Chien, Chung-Chyung Han, Chuen-Der Lien
  • Patent number: 5654213
    Abstract: A process for fabricating a CMOS structure using a single masking step to define lightly-doped source and drain regions for both N- and P-channel devices. The process forms disposable spacers adjacent to gate structures and at least one retrograde well. Retrograde wells are formed using one or more charged ions at different energy levels. In addition, heavily-doped source and drain regions are formed using blanket implants of two different conductivities into a semiconductor substrate having two contiguous wells of opposite conductivity type. By blanket implanting a first dopant into both wells, and then selectively implanting a second dopant, the diffusion of the second dopant is partially suppressed by the first dopant. The partial suppression of first dopant results in shallow implants being formed. Also disclosed is a process for forming contact openings and contact implants.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: August 5, 1997
    Assignee: Integrated Device Technology, Inc.
    Inventors: Jeong Yeol Choi, Chung-Jen Chien, Chung-Chyung Han, Chuen-Der Lien