Patents by Inventor Chung H. Lam

Chung H. Lam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160350647
    Abstract: A neuromorphic memory system including neuromorphic memory arrays. The neuromorphic memory system includes a presynaptic neuron circuit coupled to a postsynaptic neuron circuit by a resistive memory cell. The method includes generating a presynaptic LIF pulse on a presynaptic LIF line at time t1. An activating operation activates an access transistor coupled to the presynaptic LIF line in response to the presynaptic LIF pulse. The access transistor enables LIF current to pass through the resistive memory cell to a postsynaptic LIF line. An integrating operation integrates the LIF current at the postsynaptic LIF line over time. A comparing operation compares a LIF voltage at the postsynaptic LIF line to a threshold voltage. A generating operation generates a postsynaptic spike timing dependent plasticity (STDP) pulse on a postsynaptic STDP line if the LIF voltage is beyond the threshold voltage.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 1, 2016
    Inventors: Kohji Hosokawa, Masatoshi Ishii, SangBum Kim, Chung H. Lam, Scott C. Lewis
  • Publication number: 20160350643
    Abstract: A neuromorphic memory system including neuromorphic memory arrays. Each neuromorphic memory array includes rows and columns of neuromorphic memory cells. A column of postsynaptic circuits is electrically coupled to postsynaptic spike timing dependent plasticity (STDP) lines. Each postsynaptic STDP line is coupled to a row of neuromorphic memory cells. A column of summing circuits is electrically coupled to postsynaptic leaky integrate and fire (LIF) lines. Each postsynaptic LIF line is coupled to the row of neuromorphic memory cells at a respective memory array. Each summing circuit provides a sum of signals from the postsynaptic LIF lines to a respective postsynaptic circuit.
    Type: Application
    Filed: May 26, 2015
    Publication date: December 1, 2016
    Inventors: Kohji Hosokawa, Masatoshi Ishii, SangBum Kim, Chung H. Lam, Scott C. Lewis
  • Patent number: 9502107
    Abstract: Structures and methods for a multi-bit phase change memory are disclosed herein. A method includes establishing a write-reference voltage that incrementally ramps over a write period. The increments of the write-reference voltage correspond to discrete resistance states of a storage cell of the multi-bit phase change memory.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 22, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chung H. Lam, Scott C. Lewis, Thomas M. Maffitt, Jack R. Morrish
  • Patent number: 9478736
    Abstract: A system and method for fabricating a memory array device. An example memory array device includes a plurality of memory cells, each including a FET over a substrate and a memory element over the FET. Each memory element includes a plurality of epitaxially grown memory element layers. The memory elements formed utilizing two etches through all epitaxially grown layers. Each of these etches can be split to two separate processes specific to CMOS transistor etch and to memory element etch. The memory array device includes a plurality of gate conductors configured along a first axis, in parallel. Each FET of the memory cells adjacent to two gate conductors. The memory array device includes a plurality of bit lines configured along a second axis, in parallel, and electrically coupled to a plurality of memory elements along the second axis.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 25, 2016
    Assignee: International Business Machines Corporation
    Inventors: John K. DeBrosse, Chung H. Lam, Janusz J. Nowak
  • Publication number: 20160224887
    Abstract: Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor.
    Type: Application
    Filed: January 7, 2016
    Publication date: August 4, 2016
    Inventors: Daniel J. Friedman, Seongwon Kim, Chung H. Lam, Dharmendra S. Modha, Bipin Rajendran, Jose A. Tierno
  • Publication number: 20160224890
    Abstract: Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor.
    Type: Application
    Filed: January 7, 2016
    Publication date: August 4, 2016
    Inventors: Daniel J. Friedman, Seongwon Kim, Chung H. Lam, Dharmendra S. Modha, Bipin Rajendran, Jose A. Tierno
  • Publication number: 20160203858
    Abstract: A neuromorphic memory circuit including a programmable resistive memory element, an axon LIF line to transmit an axon LIF pulse, and a dendrite LIF line to build up a dendrite LIF charge over time. A first transistor provides a discharge path for the dendrite LIF charge through the programmable resistive memory element when the axon LIF line transmits the axon LIF pulse. An axon STDP line transmits an axon STDP pulse. The axon STDP pulse is longer than the axon LIF pulse. A dendrite STDP line is configured to transmit a dendrite STDP pulse after voltage at the dendrite LIF line falls below a threshold voltage. A second transistor is coupled to the axon STDP line and the programmable resistive memory element. The second transistor provides an electrical path for the dendrite STDP pulse through the programmable resistive memory element when the axon STDP line transmits the axon STDP pulse.
    Type: Application
    Filed: January 14, 2015
    Publication date: July 14, 2016
    Inventors: SangBum Kim, Chung H. Lam
  • Publication number: 20160203400
    Abstract: A method for operating a neuromorphic memory circuit. The method includes accumulating a dendrite LIF charge over time on a conductive dendrite LIF line. A first transmitting operation transmits an axon LIF pulse on a conductive axon LIF line. A first switching operation switches on a LIF transistor by the axon LIF pulse such that the LIF transistor provides a discharge path for the dendrite LIF charge through a programmable resistive memory element when the axon LIF line transmits the axon LIF pulse. A second transmitting operation transmits a dendrite STDP pulse if the dendrite LIF charge falls below a threshold voltage. A third transmitting operation transmits an axon STDP pulse on a conductive axon STDP line. A second switching operation switches on a STDP transistor by the axon STDP pulse. The STDP transistor provides an electrical path for the dendrite STDP pulse through the programmable resistive memory element when the axon STDP line transmits the axon STDP pulse.
    Type: Application
    Filed: June 24, 2015
    Publication date: July 14, 2016
    Inventors: SangBum Kim, Chung H. Lam
  • Patent number: 9343545
    Abstract: A memory array and a method for electrically coupling memory cell access devices to a word line. The memory array includes a source line electrically coupled to each source terminal of the memory cell access devices. The memory array also includes a first set of at least two vertical pillars positioned above and electrically coupled to the source line. A second set of vertical pillars electrically isolated from the source line and positioned such that the source line does not extend below the second set of vertical pillars is also included. Furthermore, gate terminals of the memory cell access devices laterally surround the first set of vertical pillars and the second set of vertical pillars. Finally, a first word line contact is positioned between two of the second set of vertical pillars. The first word line contact is electrically coupled to the gate terminals.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: May 17, 2016
    Assignee: International Business Machines Corporation
    Inventors: Chung H. Lam, Jing Li, Edward W. Kiewra
  • Publication number: 20160125936
    Abstract: A memory device that includes a phase change material. The phase change material is programmable to a metastable set state and metastable reset state. Furthermore, the phase change material includes an initial state with an initial electrical resistance between the set electrical resistance and the reset electrical resistance. The initial state is at a lower potential energy than the set state and the reset state. Thus, the electrical resistance of the phase change material programmed to the set state or the reset state drifts toward the initial electrical resistance over time. The memory device also includes a first electrode electrically coupled to a first area of the phase change material, and a second electrode electrically coupled to a second area of the phase change material.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 5, 2016
    Inventors: Matthew J. BrightSky, SangBum Kim, Wanki Kim, Chung H. Lam
  • Publication number: 20160125938
    Abstract: A memory device that includes a phase change material. The phase change material is programmable to a metastable set state and metastable reset state. Furthermore, the phase change material includes an initial state with an initial electrical resistance between the set electrical resistance and the reset electrical resistance. The initial state is at a lower potential energy than the set state and the reset state. Thus, the electrical resistance of the phase change material programmed to the set state or the reset state drifts toward the initial electrical resistance over time. The memory device also includes a first electrode electrically coupled to a first area of the phase change material, and a second electrode electrically coupled to a second area of the phase change material.
    Type: Application
    Filed: June 24, 2015
    Publication date: May 5, 2016
    Inventors: Matthew J. BrightSky, SangBum Kim, Wanki Kim, Chung H. Lam
  • Patent number: 9311009
    Abstract: A memory system, system including the memory system and method of reducing memory system power consumption. The memory system includes multiple memory units allocable to one of a number of processor units, e.g., processors or processor cores. A memory controller receives requests for memory from the processor units and allocates sufficient space from the memory to each requesting processor unit. Allocated memory can include some Single Level per Cell (SLC) memory units storing a single bit per cell and other memory units storing more than one bit per cell. Thus, two processor units may be assigned identical memory space, while half, or fewer, than the number of cells of one are assigned to the other.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bing Dai, Chung H. Lam, Jing Li
  • Patent number: 9298383
    Abstract: A memory system, system including the memory system and method of reducing memory system power consumption. The memory system includes multiple memory units allocable to one of a number of processor units, e.g., processors or processor cores. A memory controller receives requests for memory from the processor units and allocates sufficient space from the memory to each requesting processor unit. Allocated memory can include some Single Level per Cell (SLC) memory units storing a single bit per cell and other memory units storing more than one bit per cell. Thus, two processor units may be assigned identical memory space, while half, or fewer, than the number of cells of one are assigned to the other.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bing Dai, Chung H. Lam, Jing Li
  • Patent number: 9299804
    Abstract: A memory array and a method for electrically coupling memory cell access devices to a word line. The memory array includes a source line electrically coupled to each source terminal of the memory cell access devices. The memory array also includes a first set of at least two vertical pillars positioned above and electrically coupled to the source line. A second set of vertical pillars electrically isolated from the source line and positioned such that the source line does not extend below the second set of vertical pillars is also included. Furthermore, gate terminals of the memory cell access devices laterally surround the first set of vertical pillars and the second set of vertical pillars. Finally, a first word line contact is positioned between two of the second set of vertical pillars. The first word line contact is electrically coupled to the gate terminals.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Chung H. Lam, Jing Li, Edward W. Kiewra
  • Patent number: 9299431
    Abstract: Structures and methods for a multi-bit phase change memory are disclosed herein. A method includes establishing a write-reference voltage that incrementally ramps over a write period. The increments of the write-reference voltage correspond to discrete resistance states of a storage cell of the multi-bit phase change memory.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Chung H. Lam, Scott C. Lewis, Thomas M. Maffitt, Jack Morrish
  • Patent number: 9276208
    Abstract: A method for fabricating the phase change memory cells. The method includes forming an electrically conductive bottom electrode within a substrate. A heat shield is formed within the substrate and above the bottom electrode. The heat shield is thermally coupled to the bottom electrode, includes a sidewall and extends away from the bottom electrode. A heating element is formed within the sidewall of the heat shield. The heating element is electrically coupled to the bottom electrode and is configured to generate heat during programming of the phase change memory cell.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: March 1, 2016
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Alejandro G. Schrott
  • Patent number: 9269042
    Abstract: Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 23, 2016
    Assignee: International Business Machines Corporation
    Inventors: Daniel J. Friedman, Seongwon Kim, Chung H. Lam, Dharmendra S. Modha, Bipin Rajendran, Jose A. Tierno
  • Patent number: 9269435
    Abstract: An RC-based sensing method and computer program product to effectively sense the cell resistance of a programmed Phase Change Material (PCM) memory cell. The sensing method ensures the same physical configuration of each cell (after programming): same amorphous volume, same trap density/distribution, etc. The sensing method is based on a metric: the RC based sense amplifier implements two trigger points. The measured time interval between these two points is used as the metric to determine whether the programmed cell state, e.g., resistance, is programmed into desired value. The RC-based sensing method is embedded into an iterative PCM cell programming technique to ensure a tight distribution of resistance at each level after programming; and ensure the probability of level aliasing is very small, leading to less problematic drift.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 23, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chung H. Lam, Jing Li
  • Patent number: 9263336
    Abstract: A method of manufacturing a bipolar junction transistor (BJT) array may include forming a substrate of doped silicon and forming a plurality of BJTs on the substrate. Each of the BJTs may have a first region and a second region sandwiching a base region vertically. The first region may be in contact with the substrate, where the BJTs are formed in a first row and a second row. The first row and the second row may each have BJTs separated from one another by a word line distance and the first row and second row may be separated by a bit line distance. A plurality of word line contacts may be formed laterally enclosing and electrically connected to each base region of the BJTs. The word line contacts may have a lateral thickness more than one half the word line distance and less than one half the bit line distance.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Jin Cai, SangBum Kim, Chung H. Lam, Tak H. Ning
  • Patent number: 9250816
    Abstract: A wear leveling technique is employed in a memory device so that the cycling history of a memory block is represented by the cycling history of a representative memory cell or a small number of representative memory cells. A control logic block tracks the cycling history of the one or more representative memory cells. A table tabulating the predicted shift in an optimal value for a reference variable for a sensing circuit as a function of cycling history is provided within the memory device. Prior to sensing a memory cell, the control logic block checks the total number of cycling in the one or more representative memory cells and adjusts the value for the reference variable in the sensing circuit, thereby providing an optimal value for the reference variable in the sensing circuit for each sensing cycle of the memory device.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bing Dai, Chung H. Lam, Jing Li