Patents by Inventor Chunhao J. Lee

Chunhao J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200124152
    Abstract: A powertrain system includes a flex plate, a transmission input shaft, a torque coupling, a one-way clutch, and a damper assembly. The flex plate is configured to be connected to a crankshaft of an engine. The torque coupling connects the transmission input shaft to the flex plate while allowing slip between the transmission input shaft and the flex plate. The one-way clutch is configured to couple the flex plate to the torque coupling. The damper assembly couples the flex plate to the one-way clutch and is configured to inhibit vibration transmission from the flex plate to the one-way clutch.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 23, 2020
    Applicant: GM Global Technology Operations LLC
    Inventors: Chunhao J. LEE, Farzad Samie, Derek F. Lahr, Norman K. Bucknor, Dongxu Li
  • Publication number: 20200109779
    Abstract: A system for controlling flow of transmission fluid in a vehicle may include a first pump, a second pump, a first check valve, a second check valve, and a fluid line. The first pump may include a first intake in fluid communication with a transmission discharge and a first discharge in fluid communication with a transmission intake. The second pump may include a second intake and a second discharge. The first check valve may include a first input in fluid communication with the second discharge and a first output in fluid communication with the transmission intake. The second check valve may include a second input in fluid communication with the transmission discharge and a second output in fluid communication with the second intake. The fluid line may include a first end in fluid communication with the second discharge and a second end in fluid communication with the second input.
    Type: Application
    Filed: October 8, 2018
    Publication date: April 9, 2020
    Inventors: Dongxu Li, Chunhao J. Lee, Derek F. Lahr, Dmitriy Bruder, Neeraj S. Shidore, Norman K. Bucknor, Farzad Samie
  • Patent number: 10597022
    Abstract: Presented are model-based control systems for operating parallel hybrid powertrains, methods for making/using such systems, and motor vehicles with parallel hybrid powertrains and model-based torque and speed control capabilities. A method for controlling operation of a hybrid powertrain includes receiving a command signal for a hybrid powertrain operation associated with a driver input and a current operating mode of the powertrain. A desired output torque for executing the powertrain operation is then determined. The method determines if a speed differential between an engine speed of an engine and a torque converter output speed of a torque converter is less than a calibrated threshold; if so, the method responsively engages a clutch device to operatively connect the engine's output member to the transmission's input member. Engine torque is then coordinated with motor torque such that the sum of the engine and motor torques is approximately equal to the desired output torque.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: March 24, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Venkata Prasad Atluri, Dongxu Li, Chunhao J. Lee
  • Publication number: 20200079351
    Abstract: Hybrid vehicles and methods of operating the same are disclosed. Example methods may include providing a powertrain for the vehicle, which includes an internal combustion engine configured to provide rotational power to a rotatable input of a transmission by way of a starting device, and an electric motor-generator comprising a rotor configured to selectively provide rotational power to the rotatable input. The method may further include selectively disconnecting the engine from the rotatable input using a disconnect device separate from the starting device, thereby allowing the rotatable input of the transmission to be driven at a speed faster than an output speed of the engine.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Inventors: Dongxu Li, Norman K. Bucknor, Chunhao J. Lee, Venkata Prasad Atluri, Neeraj Shidore, Farzad Samie, Derek F. Lahr
  • Patent number: 10583728
    Abstract: A powertrain includes an engine and a transmission. A vehicle includes a body structure and the powertrain supported by the body structure. The powertrain is configured to propel the body structure. The engine includes an output shaft, and the transmission includes an input member. The powertrain further includes a torque converter operable between the output shaft and the input member. The torque converter includes a pump and a turbine. The powertrain also includes a motor-generator operable as a motor and a generator. The input member of the transmission is connected to the turbine such that torque from the torque converter is transferrable to the input member. The input member of the transmission is coupled to the motor-generator such that torque is transferred between the input member and the motor-generator.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 10, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Farzad Samie, Chunhao J. Lee, Dongxu Li, Norman K. Bucknor
  • Patent number: 10576837
    Abstract: An electric drive unit is provided having an electric motor-generator coupled with a torque converter. Vehicles and machines employing the same, as well as methods of using the same, are also disclosed. The motor-generator may be configured to selectively drive a rotatable shaft with a motor output torque and generate electrical power from rotation of the rotatable shaft. The electric drive unit may further include a torque converter having an input and an output separated by a fluid coupling. The fluid coupling may be configured to selectively multiply torque received at the input such that a drive unit output torque at the output is selectively increased in at least a predetermined rotational speed range of the electric motor-generator.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: March 3, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dongxu Li, Chengwu Duan, Chunhao J. Lee, Lei Hao, Norman K. Bucknor, Michael A. Potter, Farzad Samie
  • Patent number: 10563744
    Abstract: Disclosed are damper assemblies for engine disconnect devices, methods for making such damper assemblies, and motor vehicles with a disconnect device for coupling/decoupling an engine with a torque converter (TC). A disconnect clutch for selectively connecting an engine with a TC includes a pocket plate that movably mounts to the TC. The pocket plate includes pockets movably seating therein engaging elements that engage input structure of the TC and thereby lock the pocket plate to the TC. A selector plate moves between engaged and disengaged positions such that the engaging elements shift into and out of engagement with the TC input structure, respectively. A flex plate is attached to the engine's output shaft for common rotation therewith. A damper plate is attached to the pocket plate for common rotation therewith. Spring elements mate the damper and flex plates such that the damper plate is movably attached to the flex plate.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: February 18, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Chunhao J. Lee, Farzad Samie, Norman K. Bucknor, Dongxu Li
  • Publication number: 20200040988
    Abstract: A method of, and a system for, controlling and predicting the health of a torque converter clutch control system is provided. The method includes determining, via a controller, rotational input and output speeds of the torque converter and a torque converter clutch slip. The method also includes determining, via the controller, whether a set of predetermined conditions are met for predicting the health of the torque converter clutch control system. The method includes gathering a plurality of initial features of the vehicle propulsion system, determining statistical information about the plurality of initial features, and selecting at least one feature of the vehicle propulsion system based on the statistical information. Furthermore, the method includes classifying the health of the torque converter clutch control system based on the selected feature or features. In some forms, principal component analysis is used to select the feature or features used for classification.
    Type: Application
    Filed: August 2, 2018
    Publication date: February 6, 2020
    Inventors: Shiming Duan, Chunhao J. Lee, Zhen Zhang, Peter P. Radecki, Xiaodong Jia
  • Patent number: 10553043
    Abstract: A method of predicting the health of and controlling a hydraulic pressure actuated torque converter lock-up clutch includes determining rotational input and output speeds of the torque converter. The method also includes determining a magnitude of the hydraulic pressure. The method additionally includes determining a level of performance of the clutch across multiple torque converter operating modes using the determined input and output torque converter speeds and the determined magnitude of the hydraulic pressure. The method also includes calculating a numeric state of health (SOH) coefficient of the clutch that quantifies a relative severity of degradation of a plurality of clutch characteristics across the multiple torque converter operating modes. Furthermore, the method includes executing a control action relative to the clutch when the calculated numeric SOH coefficient for specified torque converter operating mode(s) is less than a calibrated SOH threshold.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 4, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Shiming Duan, Chunhao J Lee, Farzad Samie
  • Publication number: 20200016986
    Abstract: An electric drive unit is provided having an electric motor-generator coupled with a torque converter. Vehicles and machines employing the same, as well as methods of using the same, are also disclosed. The motor-generator may be configured to selectively drive a rotatable shaft with a motor output torque and generate electrical power from rotation of the rotatable shaft. The electric drive unit may further include a torque converter having an input and an output separated by a fluid coupling. The fluid coupling may be configured to selectively multiply torque received at the input such that a drive unit output torque at the output is selectively increased in at least a predetermined rotational speed range of the electric motor-generator.
    Type: Application
    Filed: July 11, 2018
    Publication date: January 16, 2020
    Inventors: Dongxu Li, Chengwu Duan, Chunhao J. Lee, Lei Hao, Norman K. Bucknor, Michael A. Potter, Farzad Samie
  • Patent number: 10527107
    Abstract: A torque transmitting device (10) includes a clutch housing (14) rotatable about an axis (A), a first set of clutch plates (20A) splined to the clutch housing (14), and a second set of clutch plates (20B) interleaved with the first set and rotatable about the axis (A) of rotation. A push plate assembly (28) is splined to the clutch housing (14) for rotation therewith. A roller assembly (42) includes a roller housing (48) splined to the clutch housing (14), a roller supporter (54) housed in the roller housing (48), and a roller element (62) supported by the roller supporter (54). A wedge assembly (12) includes a wedge housing (64) connected to a wedge block (24). The wedge housing (64) includes a ramp member (70) defining a ramp surface (16) with the roller element (62) contacting the ramp surface (16).
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: January 7, 2020
    Assignees: GM Global Technology Operations LLC, Shanghai Jiao Tong University
    Inventors: Chunhao J. Lee, Jian Yao, Li Chen, Zhao Ding, Chengliang Yin
  • Patent number: 10514096
    Abstract: The continuously variable transmission (CVT) assembly includes a CVT including a drive pulley, a driven pulley, and an endless rotatable device coupled between the drive pulley and the driven pulley. The CVT assembly also includes an actuator coupled to the drive pulley. The CVT assembly also includes an angle sensor coupled to the endless rotatable device such that the angle sensor is configured to measure an angular position of the endless rotatable device. The CVT assembly also includes a controller in communication with the actuator and the angle sensor. The controller is programmed to: (a) determine a speed ratio of the CVT based on the angular position of the endless rotatable device; and (b) control the actuator to adjust the clamping force exerted on the drive pulley in response to determining the speed ratio of the CVT.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 24, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Farzad Samie, Chunhao J. Lee, Derek F. Lahr, Dmitriy Bruder
  • Patent number: 10513251
    Abstract: Presented are engine-disconnect clutches with attendant control logic, methods for making/operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to/decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 24, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Chunhao J. Lee, Neeraj S. Shidore, Dongxu Li, Norman K. Bucknor, Farzad Samie, Derek F. Lahr
  • Patent number: 10508696
    Abstract: A selectable one-way clutch can be equipped in a vehicle powertrain assembly. The selectable one-way clutch can include a notch plate and a pocket plate. The pocket plate has a pocket, and the notch plate has a notch. A coupling mechanism is disposed in the pocket and is moveable in the pocket. The coupling mechanism is used to bring about engagement between the notch and pocket plates and, in an example, is a strut-type coupling mechanism. A pair of damper springs is disposed in the pocket. A selector plate is situated between the pocket plate and the notch plate. The selector plate includes a window.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: December 17, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Farzad Samie, Derek F. Lahr, Chunhao J. Lee
  • Publication number: 20190376568
    Abstract: A selectable one-way clutch can be equipped in a vehicle powertrain assembly. The selectable one-way clutch can include a notch plate and a pocket plate. The pocket plate has a pocket, and the notch plate has a notch. A coupling mechanism is disposed in the pocket and is moveable in the pocket. The coupling mechanism is used to bring about engagement between the notch and pocket plates and, in an example, is a strut-type coupling mechanism. A pair of damper springs is disposed in the pocket. A selector plate is situated between the pocket plate and the notch plate. The selector plate includes a window.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 12, 2019
    Inventors: Farzad Samie, Derek F. Lahr, Chunhao J. Lee
  • Publication number: 20190376589
    Abstract: A parallel (P2) hybrid electric vehicle (HEV) powertrain assembly includes a torque converter and a motor-generator unit (MGU). The parallel hybrid electric vehicle (HEV) powertrain assembly can be equipped in a front wheel drive (FWD) powertrain architecture. The torque converter has an impeller cover. The motor-generator unit has a rotor and a stator. The rotor extends from the impeller cover, and the stator is mounted to a transmission bell housing.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 12, 2019
    Inventors: Farzad Samie, Derek F. Lahr, Dongxu Li, Chunhao J. Lee, Norman K. Bucknor
  • Publication number: 20190368570
    Abstract: A vehicle powertrain variable vibration absorber assembly can be equipped in a hybrid electric vehicle (HEV). The vehicle powertrain variable vibration absorber assembly includes a rotary device, a drive-ratio assembly, and a spring. The rotary device, in an example, is a motor-generator unit (MGU). The drive-ratio assembly, in an example, is a planetary gear assembly. The drive-ratio assembly receives rotational drive input from the rotary device, and transmits rotational drive output to a powertrain component. The spring, in an example, is a variable stiffness spring. The spring is connected to the drive-ratio assembly and is connected to a grounded component. During use, the vehicle powertrain variable vibration absorber assembly absorbs different frequencies of vibration brought about by a vehicle engine amid different operating modes. The operating modes can involve cylinder deactivation technologies.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Derek F. Lahr, Neeraj S. Shidore, James B. Borgerson, Chunhao J. Lee, Norman K. Bucknor
  • Patent number: 10471820
    Abstract: A drivetrain system for a vehicle is described, and includes an internal combustion engine, a geartrain, an electric machine, a power take-off unit, and a driveline. The internal combustion engine is coupled to the geartrain via a disconnect clutch and a torque converter. The geartrain includes a transmission and a differential gearset, including an output member of the transmission coupled to an input member of the differential gearset. The input member of the differential gearset is coupled to a rotor of the electric machine and the power take-off unit. The differential gearset is coupled to first and second intermediate driveshaft members of the driveline to transfer propulsion power to vehicle wheels that are arranged in a front-wheel configuration.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: November 12, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Farzad Samie, Norman K. Bucknor, Chunhao J. Lee, Dongxu Li, Chandra S. Namuduri, Alexandru Rajala
  • Patent number: 10473200
    Abstract: A continuously variable transmission (CVT) comprises a shaft rotatable about an axis, and variator assembly, and an actuator mechanism. The variator assembly includes a pulley supported on the shaft and having a ramp surface, and an endless rotatable device frictionally engaged with the pulley. The ramp surface inclines in an axial direction along the axis toward the endless rotatable device. The CVT further comprises an actuator mechanism that includes a wedge component that has a wedge surface interfacing with the ramp surface, and a rotary piston operatively connected to the wedge component. The rotary piston defines a first fluid chamber pressurizable to apply a rotational force that provides relative motion between the ramp surface and the wedge surface resulting in a wedge force on the ramp surface and a clamping force of the endless rotatable device on the pulley.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 12, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Chengwu Duan, Chunhao J. Lee, Jian Yao, Ying Huang, Derek F. Lahr, Farzad Samie
  • Patent number: 10473213
    Abstract: A method of controlling a continuously variable transmission includes monitoring powertrain operating conditions, and calculating, via an electronic controller, a commanded clamping force based on the powertrain operating conditions, wherein the commanded clamping force includes a commanded clamping force of an input pulley and a commanded clamping force of an output pulley on the endless rotatable device. The method also includes activating, via the electronic controller, at least one of the input actuator and the output actuator such that an axial component of the input wedge force and the axial force of the input actuator together provide the commanded clamping force of the input pulley, and an axial component of the output wedge force and the axial force of the output actuator together provide the commanded clamping force of the output pulley.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: November 12, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Ying Huang, Chunhao J. Lee, Jian Yao, Chengwu Duan