Patents by Inventor Chunhao J. Lee

Chunhao J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190338743
    Abstract: An engine starter system includes a starter including a multi-phase brushless electric motor and an electronic commutator assembly. A controller includes an instruction set that is executable in response to a command to execute an engine starting event. Operation includes determining a desired starting profile, controlling the starter to engage a rotatable member of the engine, and monitoring the rotational speed of the electric motor via a rotor position sensing circuit. The starter inverter is dynamically controlled to control the electric motor to spin the rotatable member of the internal combustion engine responsive to the desired starting profile, including dynamically controlling the starter inverter to control the electric motor to control the spin of the engine responsive to the desired starting profile to prevent occurrence of an engine speed flare event during the engine starting event.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Suresh Gopalakrishnan, Lei Hao, Chandra S. Namuduri, Paul S. Lombardo, Jeffrey R. Aldrich, Chunhao J. Lee, Neeraj S. Shidore
  • Publication number: 20190338742
    Abstract: A method of controlled stopping an internal combustion engine having a stop-start mode and starter assembly includes detecting when the stop-start mode is active. The method also includes monitoring current rotational speed and position of the engine. The method additionally includes determining when the current rotational position is within a predetermined range of a target stop rotational position and the current rotational speed is less than a threshold rotational speed, and afterward energizing the starter assembly to engage the engine. The method also includes establishing a time delay following energizing the starter assembly to confirm engagement of the starter assembly with the engine. Furthermore, the method includes applying a torque by the starter assembly to stop the engine at the target stop position. A vehicle powertrain employing the engine equipped with the stop-start mode, the starter assembly, and an electronic controller configured to execute the method is also provided.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Suresh Gopalakrishnan, Lei Hao, Chandra S. Namuduri, Paul S. Lombardo, Chunhao J. Lee, Alexandru Rajala, Neeraj S. Shidore, Farzad Samie, Norman K. Bucknor, Dongxu Li
  • Publication number: 20190338744
    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chandra S. Namuduri, Kenneth J. Shoemaker, Chunhao J. Lee, Lei Hao, Thomas W. Nehl, Suresh Gopalakrishnan
  • Patent number: 10465756
    Abstract: A selectable torque transfer system includes an input member to receive an input torque, and an output member that is selectively coupled to the input member. The selectable torque transfer system also includes an engaging member disposed between the input member and the output member and a biasing element configured to urge the engaging member towards a first position. The selectable torque transfer system further includes an electrically-powered solenoid configured to actuate the engaging member to a second position thereby enabling torque transfer from the input member to the output member.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 5, 2019
    Assignee: GM Global Technologies Operations LLC
    Inventors: Farzad Samie, Tito R. Huffman, Chunhao J. Lee
  • Patent number: 10458490
    Abstract: Systems and methods are provided for locking a cycle. A clutch system of the cycle includes a forward lock system configured to alternatively prevent or allow operation of the cycle in a forward direction. A shaft extends through the clutch system. An actuator is configured to move the forward lock system along the shaft between a lock position and a free position. A controller is configured to shift the actuator, via a signal from a processor, between the lock position and the free position. The cycle is configured to be locked against forward operation by the clutch system.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: October 29, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Zhen Gao, Chengwu Duan, Jian Yao, Chunhao J. Lee
  • Publication number: 20190299964
    Abstract: Presented are engine-disconnect clutches with attendant control logic, methods for making/operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to/decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chunhao J. Lee, Neeraj S. Shidore, Dongxu Li, Norman K. Bucknor, Farzad Samie, Derek F. Lahr
  • Publication number: 20190232941
    Abstract: Presented are model-based control systems for operating parallel hybrid powertrains, methods for making/using such systems, and motor vehicles with parallel hybrid powertrains and model-based torque and speed control capabilities. A method for controlling operation of a hybrid powertrain includes receiving a command signal for a hybrid powertrain operation associated with a driver input and a current operating mode of the powertrain. A desired output torque for executing the powertrain operation is then determined. The method determines if a speed differential between an engine speed of an engine and a torque converter output speed of a torque converter is less than a calibrated threshold; if so, the method responsively engages a clutch device to operatively connect the engine's output member to the transmission's input member. Engine torque is then coordinated with motor torque such that the sum of the engine and motor torques is approximately equal to the desired output torque.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 1, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yue-Yun Wang, Venkata Prasad Atluri, Dongxu Li, Chunhao J. Lee
  • Patent number: 10358123
    Abstract: Presented are engine-disconnect clutches with attendant control logic, methods for making/operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to/decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: July 23, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Chunhao J. Lee, Neeraj S. Shidore, Dongxu Li, Norman K. Bucknor, Farzad Samie, Derek F. Lahr
  • Patent number: 10337597
    Abstract: Disclosed are engine flexplates with integrated engine disconnects, methods for making and for using such flexplates, and motor vehicles with an engine flexplate having an integrated engine disconnect device. An engine flexplate assembly is disclosed for operatively coupling an engine to a hydrokinetic torque converter. The flexplate assembly includes a disk-shaped body with a central hub that rigidly attaches on the fore side thereof to the engine output shaft for common rotation therewith. A disconnect device, which is positioned on the aft side of the disk-shaped body, includes concentric inner and outer races. The outer race is rigidly attached to the disk-shaped body for common rotation therewith. The inner race rigidly attaches to the front cover of the TC housing for common rotation therewith. The disconnect device operatively disconnects the engine output shaft from the TC housing front cover when a torque transmitted therebetween reverses direction.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: July 2, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Farzad Samie, Derek F. Lahr, Chunhao J. Lee
  • Patent number: 10336314
    Abstract: A low-voltage hybrid powertrain system for a vehicle includes an engine that is coupled via an engine disconnect clutch to an input member of the transmission, and a low-voltage electric machine is coupled to the transmission. The powertrain system operates in an electric vehicle (EV) mode with the engine in an OFF state and with the engine disconnect clutch in an open/deactivated state. When an output torque request indicates a command for vehicle acceleration, the electric machine is controlled to generate torque in response to the output torque request and the engine is simultaneously cranked and started. Upon starting, the engine operates in a speed control mode to activate the engine disconnect clutch. The engine and the low-voltage electric machine are controlled to generate torque in response to the output torque request when the engine disconnect clutch is activated.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 2, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Chunhao J. Lee, Neeraj S. Shidore, Norman K. Bucknor, K V Hebbale, Farzad Samie, Dongxu Li
  • Patent number: 10337609
    Abstract: A continuously variable transmission, a transmission control system, and a method is provided. The control system is configured to determine whether a predetermined condition is met for applying a clutch critical pressure to an applied clutch. The clutch critical pressure is less than line pressure and is a pressure at which the clutch may slip upon experiencing a predetermined torque disturbance level. The control system is configured to command the clutch critical pressure to be applied to the clutch if the predetermined condition is met. The control system is further configured to determine whether the clutch is slipping beyond a predetermined threshold, and if the clutch is slipping beyond the predetermined threshold, command a clutch slip control scheme to be applied to the clutch that is configured to bring a clutch slip of the clutch under the predetermined threshold.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: July 2, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Chunhao J Lee, Dongxu Li, Farzad Samie, Chi-kuan Kao, Kumar V Hebbale
  • Patent number: 10323696
    Abstract: Disclosed are latching mechanisms for engine disconnect devices, methods for making and for using such latching mechanisms, and motor vehicles with a disconnect device for coupling/decoupling an engine with a torque converter (TC). A disconnect clutch for selectively connecting an engine with a TC includes a pocket plate that movably mounts to the TC. The pocket plate includes pockets movably seating therein struts that engage notches in a notch plate to lock the pocket plate to the notch plate. A selector plate moves between deactivated and activated positions such that the struts shift into and out of engagement with the notch plate notches, respectively. An activation device is selectively actuable to move the selector plate between activated and deactivated positions. A latching mechanism automatically transitions to a latched state responsive to the selector plate being activated. When latched, this latching mechanism retains the selector plate in the activated position.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 18, 2019
    Assignee: GM Global Technology Operations LLC.
    Inventors: Farzad Samie, Derek F. Lahr, Chunhao J. Lee, Norman K. Bucknor, Dongxu Li
  • Publication number: 20190176607
    Abstract: A powertrain includes an engine and a transmission. A vehicle includes a body structure and the powertrain supported by the body structure. The powertrain is configured to propel the body structure. The engine includes an output shaft, and the transmission includes an input member. The powertrain further includes a torque converter operable between the output shaft and the input member. The torque converter includes a pump and a turbine. The powertrain also includes a motor-generator operable as a motor and a generator. The input member of the transmission is connected to the turbine such that torque from the torque converter is transferrable to the input member. The input member of the transmission is coupled to the motor-generator such that torque is transferred between the input member and the motor-generator.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Farzad Samie, Chunhao J. Lee, Dongxu Li, Norman K. Bucknor
  • Publication number: 20190170231
    Abstract: A continuously variable transmission (CVT) comprises a shaft rotatable about an axis, and variator assembly, and an actuator mechanism. The variator assembly includes a pulley supported on the shaft and having a ramp surface, and an endless rotatable device frictionally engaged with the pulley. The ramp surface inclines in an axial direction along the axis toward the endless rotatable device. The CVT further comprises an actuator mechanism that includes a wedge component that has a wedge surface interfacing with the ramp surface, and a rotary piston operatively connected to the wedge component. The rotary piston defines a first fluid chamber pressurizable to apply a rotational force that provides relative motion between the ramp surface and the wedge surface resulting in a wedge force on the ramp surface and a clamping force of the endless rotatable device on the pulley.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chengwu Duan, Chunhao J. Lee, Jian Yao, Ying Huang, Derek F. Lahr, Farzad Samie
  • Publication number: 20190168731
    Abstract: Presented are engine-disconnect clutches with attendant control logic, methods for making/operating such disconnect clutches, and hybrid electric vehicles (HEV) equipped with an engine that is coupled to/decoupled from a transmission and electric motor via a disconnect clutch. A representative method for controlling an HEV powertrain includes receiving an HEV powertrain operation command, then determining a clutch mode of a multi-mode clutch device to execute the HEV powertrain operation. This multi-mode clutch device is operable in: a lock-lock mode, in which the clutch device transmits torque to and from the engine; a free-free mode, in which the clutch device disconnects the engine's output member from the transmission's input member, preventing torque transmission to and from the engine; a lock-free mode, in which the clutch device transmits torque from but not to the engine; and, a free-lock mode, in which the clutch device transmits torque to but not from the engine.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Chunhao J. Lee, Neeraj S. Shidore, Dongxu Li, Norman K. Bucknor, Farzad Samie, Derek F. Lahr
  • Publication number: 20190170249
    Abstract: A method of controlling a continuously variable transmission includes monitoring powertrain operating conditions, and calculating, via an electronic controller, a commanded clamping force based on the powertrain operating conditions, wherein the commanded clamping force includes a commanded clamping force of an input pulley and a commanded clamping force of an output pulley on the endless rotatable device. The method also includes activating, via the electronic controller, at least one of the input actuator and the output actuator such that an axial component of the input wedge force and the axial force of the input actuator together provide the commanded clamping force of the input pulley, and an axial component of the output wedge force and the axial force of the output actuator together provide the commanded clamping force of the output pulley.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ying Huang, Chunhao J. Lee, Jian Yao, Chengwu Duan
  • Patent number: 10267391
    Abstract: A continuously variable transmission (CVT comprises a shaft rotatable about an axis, and variator assembly, and an actuator mechanism. The variator assembly includes a pulley supported on the shaft and having a ramp surface, and an endless rotatable device frictionally engaged with the pulley. The ramp surface inclines in an axial direction along the axis toward the endless rotatable device. The CVT further comprises an actuator mechanism that includes a wedge component that has a wedge surface interfacing with the ramp surface, and a rotary piston operatively connected to the wedge component. The rotary piston defines a first fluid chamber pressurizable to apply a rotational force that provides relative motion between the ramp surface and the wedge surface resulting in a wedge force on the ramp surface and a clamping force of the endless rotatable device on the pulley.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: April 23, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Jian Yao, Chengwu Duan, Chunhao J. Lee, Derek F. Lahr
  • Patent number: 10260613
    Abstract: Disclosed are damper assemblies for engine disconnect devices, methods for making such damper assemblies, and motor vehicles with a disconnect device for coupling/decoupling an engine with a torque converter (TC). A disconnect clutch for selectively connecting an engine with a TC includes a pocket plate that movably mounts to the TC. The pocket plate includes pockets movably seating therein engaging elements that engage input structure of the TC and thereby lock the pocket plate to the TC. A selector plate moves between engaged and disengaged positions such that the engaging elements shift into and out of engagement with the TC input structure, respectively. A flex plate is attached to the engine's output shaft for common rotation therewith. A damper plate is attached to the pocket plate for common rotation therewith. Spring elements mate the damper and flex plates such that the damper plate is movably attached to the flex plate.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: April 16, 2019
    Assignee: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Farzad Samie, Chunhao J. Lee, Norman K. Bucknor, Dongxu Li
  • Publication number: 20190107187
    Abstract: Disclosed are damper assemblies for engine disconnect devices, methods for making such damper assemblies, and motor vehicles with a disconnect device for coupling/decoupling an engine with a torque converter (TC). A disconnect clutch for selectively connecting an engine with a TC includes a pocket plate that movably mounts to the TC. The pocket plate includes pockets movably seating therein engaging elements that engage input structure of the TC and thereby lock the pocket plate to the TC. A selector plate moves between engaged and disengaged positions such that the engaging elements shift into and out of engagement with the TC input structure, respectively. A flex plate is attached to the engine's output shaft for common rotation therewith. A damper plate is attached to the pocket plate for common rotation therewith. Spring elements mate the damper and flex plates such that the damper plate is movably attached to the flex plate.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Derek F. Lahr, Chunhao J. Lee, Farzad Samie, Norman K. Bucknor, Dongxu Li
  • Publication number: 20190107195
    Abstract: The continuously variable transmission (CVT) assembly includes a CVT including a drive pulley, a driven pulley, and an endless rotatable device coupled between the drive pulley and the driven pulley. The CVT assembly also includes an actuator coupled to the drive pulley. The CVT assembly also includes an angle sensor coupled to the endless rotatable device such that the angle sensor is configured to measure an angular position of the endless rotatable device. The CVT assembly also includes a controller in communication with the actuator and the angle sensor. The controller is programmed to: (a) determine a speed ratio of the CVT based on the angular position of the endless rotatable device; and (b) control the actuator to adjust the clamping force exerted on the drive pulley in response to determining the speed ratio of the CVT.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Farzad Samie, Chunhao J. Lee, Derek F. Lahr, Dmitriy Bruder