Patents by Inventor Chunhua Zhou

Chunhua Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210399124
    Abstract: The present invention relates to a semiconductor device with an asymmetric gate structure. The device comprises a substrate; a channel layer, positioned above the substrate; a barrier layer, positioned above the channel layer, the barrier layer and the channel layer being configured to form two-dimensional electron gas (2DEG), and the 2DEG being formed in the channel layer along an interface between the channel layer and the barrier layer; a source contact and a drain contact, positioned above the barrier layer; a doped group III-V layer, positioned above the barrier layer and between the drain contact and the source contact; and a gate electrode, positioned above the doped group III-V layer and configured to form a Schottky junction with the doped group III-V layer, wherein the doped group III-V layer and/or gate electrode has a non-central symmetrical geometry so as to achieve the effect of improving gate leakage current characteristics.
    Type: Application
    Filed: October 7, 2020
    Publication date: December 23, 2021
    Inventors: Hang LIAO, Qiyue ZHAO, Chang An LI, Chao WANG, Chunhua ZHOU, King Yuen WONG
  • Publication number: 20210399123
    Abstract: The present invention relates to a semiconductor device having an improved gate leakage current. The semiconductor device includes: a substrate; a first nitride semiconductor layer, positioned above the substrate; a second nitride semiconductor layer, positioned above the first nitride semiconductor layer and having an energy band gap greater than that of the first nitride semiconductor layer; a source contact and a drain contact, positioned above the second nitride semiconductor layer; a doped third nitride semiconductor layer, positioned above the second nitride semiconductor layer and between the drain contact and the source contact; and a gate electrode, positioned above the doped third nitride semiconductor layer, where the doped third nitride semiconductor layer has at least one protrusion extending along a direction substantially parallel to an interface between the first nitride semiconductor layer and the second nitride semiconductor layer, thereby improving the gate leakage current phenomenon.
    Type: Application
    Filed: October 7, 2020
    Publication date: December 23, 2021
    Inventors: Hang LIAO, Qiyue ZHAO, Chang An LI, Chao WANG, Chunhua ZHOU, King Yuen WONG
  • Publication number: 20210184352
    Abstract: An object of the present disclosure is to provide a radiation element and a bandwidth extension structure. The radiation element according to the present disclosure comprises: a basic radiation element and one or more bandwidth extension structures; wherein the one or more bandwidth extension structures are mounted on the basic radiation element to extend the operating bandwidth of the basic radiation element. The bandwidth extension structure according to the present disclosure is mounted on the basic radiation element to extend the operating band of the basic radiation element.
    Type: Application
    Filed: November 2, 2018
    Publication date: June 17, 2021
    Applicant: Nokia Shanghai Bell Co., Ltd.
    Inventors: Jiankai Xu, Ke Chen, Chunhua Zhou, Jing Liu, Jihong Sun
  • Publication number: 20210151594
    Abstract: A semiconductor device includes a substrate, a channel layer, a barrier layer, a gate, a strained layer and a passivation layer. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The gate is disposed on the barrier layer. The strained layer is disposed on the barrier layer. The passivation layer covers the gate and the strained layer. The material of the passivation layer differs from that of the strained layer.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 20, 2021
    Inventors: KINGYUEN WONG, HAN-CHIN CHIU, MING-HONG CHANG, CHUNHUA ZHOU, JINHAN ZHANG
  • Publication number: 20210132137
    Abstract: The application relates to a device and method for measuring a high electron mobility transistor. The device provided includes a controller, a protection circuit, a load circuit and a switching circuit electrically connected between the load circuit and the protection circuit. The controller is configured to provide a first control signal having a first value to a semiconductor component at a first time point and provide a second control signal having a second value to the switching circuit at a second time point. The semiconductor component is turned on by the first value of the first control signal, and the switching circuit is turned on by the second value of the second control signal. The second time point is later than the first time point.
    Type: Application
    Filed: February 24, 2020
    Publication date: May 6, 2021
    Inventors: Yulin CHEN, Chunhua ZHOU, Sichao LI, Wenjie LIN, Tao ZHANG
  • Patent number: 10312260
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. de Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 10096702
    Abstract: A gallium nitride (GaN) transistor which includes two or more insulator semiconductor interface regions (insulators). A first insulator disposed between the gate and drain (near the gate) minimizes the gate leakage and fields near the gate that cause high gate-drain charge (Qgd). A second insulator (or multiple insulators), disposed between the first insulator and the drain, minimizes electric fields at the drain contact and provides a high density of charge in the channel for low on-resistance.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 9, 2018
    Assignee: Efficient Power Conversion Corporation
    Inventors: Robert Beach, Robert Strittmatter, Chunhua Zhou, Guangyuan Zhao, Jianjun Cao
  • Publication number: 20170352754
    Abstract: A gallium nitride (GaN) transistor which includes two or more insulator semiconductor interface regions (insulators). A first insulator disposed between the gate and drain (near the gate) minimizes the gate leakage and fields near the gate that cause high gate-drain charge (Qgd). A second insulator (or multiple insulators), disposed between the first insulator and the drain, minimizes electric fields at the drain contact and provides a high density of charge in the channel for low on-resistance.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 7, 2017
    Inventors: Robert Beach, Robert Strittmatter, Chunhua Zhou, Guangyuan Zhao, Jianjun Cao
  • Patent number: 9837438
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: December 5, 2017
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20170330898
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 16, 2017
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. de Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9583480
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: February 28, 2017
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9331191
    Abstract: A GaN transistor with reduced output capacitance and a method form manufacturing the same. The GaN transistor device includes a substrate layer, one or more buffer layer disposed on a substrate layer, a barrier layer disposed on the buffer layers, and a two dimensional electron gas (2DEG) formed at an interface between the barrier layer and the buffer layer. Furthermore, a gate electrode is disposed on the barrier layer and a dielectric layer is disposed on the gate electrode and the barrier layer. The GaN transistor includes one or more isolation regions formed in a portion of the interface between the at least one buffer layer and the barrier layer to remove the 2DEG in order to reduce output capacitance Coss of the GaN transistor.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: May 3, 2016
    Assignee: Efficient Power Conversion Corporation
    Inventors: Stephen L. Colino, Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20160111416
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Application
    Filed: December 3, 2015
    Publication date: April 21, 2016
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20160086980
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit and a method for manufacturing the same. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooij, Chunhua Zhou, Seshadri Kolluri, Fang-Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9214461
    Abstract: A GaN transistor with polysilicon layers for creating additional components for an integrated circuit. The GaN device includes an EPI structure and an insulating material disposed over EPI structure. Furthermore, one or more polysilicon layers are disposed in the insulating material with the polysilicon layers having one or more n-type regions and p-type regions. The device further includes metal interconnects disposed on the insulating material and vias disposed in the insulating material layer that connect source and drain metals to the n-type and p-type regions of the polysilicon layer.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Coversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9214399
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Patent number: 9214528
    Abstract: A method for forming an enhancement mode GaN HFET device with an isolation area that is self-aligned to a contact opening or metal mask window. Advantageously, the method does not require a dedicated isolation mask and the associated process steps, thus reducing manufacturing costs. The method includes providing an EPI structure including a substrate, a buffer layer a GaN layer and a barrier layer. A dielectric layer is formed over the barrier layer and openings are formed in the dielectric layer for device contact openings and an isolation contact opening. A metal layer is then formed over the dielectric layer and a photoresist film is deposited above each of the device contact openings. The metal layer is then etched to form a metal mask window above the isolation contact opening and the barrier and GaN layer are etched at the portion that is exposed by the isolation contact opening in the dielectric layer.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 15, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Chunhua Zhou, Jianjun Cao, Alexander Lidow, Robert Beach, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Seshadri Kolluri, Yanping Ma, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao
  • Patent number: 9171911
    Abstract: An integrated semiconductor device which includes a substrate layer, a buffer layer formed on the substrate layer, a gallium nitride layer formed on the buffer layer, and a barrier layer formed on the gallium nitride layer. Ohmic contacts for a plurality of transistor devices are formed on the barrier layer. Specifically, a plurality of first ohmic contacts for the first transistor device are formed on a first portion of the surface of the barrier layer, and a plurality of second ohmic contacts for the second transistor device are formed on a second portion of the surface of the barrier layer. In addition, one or more gate structures formed on a third portion of the surface of the barrier between the first and second transistor devices. Preferably, the one or more gate structures and the spaces between the gate structures and the source contacts of the transistor devices collectively form an isolation region that electrically isolates the first transistor device from the second transistor device.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: October 27, 2015
    Assignee: Efficient Power Conversion Corporation
    Inventors: Chunhua Zhou, Jianjun Cao, Alexander Lidow, Robert Beach, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Seshadri Kolluri, Yanping Ma, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao
  • Publication number: 20150034962
    Abstract: An integrated circuit having a substrate, a buffer layer formed over the substrate, a barrier layer formed over the buffer layer, and an isolation region that isolates an enhancement mode device from a depletion mode device. The integrated circuit further includes a first gate contact for the enhancement mode device that is disposed in one gate contact recess and a second gate contact for the depletion mode device that is disposed in a second gate contact recess.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 5, 2015
    Inventors: Jianjun Cao, Robert Beach, Alexander Lidow, Alana Nakata, Robert Strittmatter, Guangyuan Zhao, Yanping Ma, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar
  • Publication number: 20150028390
    Abstract: A GaN transistor with reduced output capacitance and a method form manufacturing the same. The GaN transistor device includes a substrate layer, one or more buffer layer disposed on a substrate layer, a barrier layer disposed on the buffer layers, and a two dimensional electron gas (2DEG) formed at an interface between the barrier layer and the buffer layer. Furthermore, a gate electrode is disposed on the barrier layer and a dielectric layer is disposed on the gate electrode and the barrier layer. The GaN transistor includes one or more isolation regions formed in a portion of the interface between the at least one buffer layer and the barrier layer to remove the 2DEG in order to reduce output capacitance Coss of the GaN transistor.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Inventors: Stephen L. Colino, Jianjun Cao, Robert Beach, Alexander Lidon, Alana Nakata, Guangyuan Zhao, Yanping Ma, Robert Strittmatter, Michael A. De Rooji, Chunhua Zhou, Seshadri Kolluri, Fang Chang Liu, Ming-Kun Chiang, Jiali Cao, Agus Jauhar