Patents by Inventor Chunshan Yin

Chunshan Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11404532
    Abstract: An integrated circuit having a fingered capacitor with multiple metal fingers formed in inverted-trapezoid-shaped trenches in a multi-layer structure having a polish stop layer over an ultra-low-K dielectric layer over a low-K dielectric layer over a dielectric cap layer. The ultra-low-K dielectric layer reduces capacitance variations between the fingers, while the polish stop layer prevents metal height variations that would otherwise result from performing CMP directly on the ultra-low-K dielectric layer. The layered structure may include another low-K dielectric layer over the polish stop layer that provides a soft landing for the CMP. The polish stop layer may be removed after the CMP polishing and another ultra-low-K dielectric layer may be formed to encapsulate the tops of the metal fingers in the ultra-low-K dielectric material.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: August 2, 2022
    Assignee: NXP B.V.
    Inventors: Chunshan Yin, Cheong Min Hong, Yu Chen
  • Publication number: 20200357881
    Abstract: An integrated circuit having a fingered capacitor with multiple metal fingers formed in inverted-trapezoid-shaped trenches in a multi-layer structure having a polish stop layer over an ultra-low-K dielectric layer over a low-K dielectric layer over a dielectric cap layer. The ultra-low-K dielectric layer reduces capacitance variations between the fingers, while the polish stop layer prevents metal height variations that would otherwise result from performing CMP directly on the ultra-low-K dielectric layer. The layered structure may include another low-K dielectric layer over the polish stop layer that provides a soft landing for the CMP. The polish stop layer may be removed after the CMP polishing and another ultra-low-K dielectric layer may be formed to encapsulate the tops of the metal fingers in the ultra-low-K dielectric material.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Inventors: Chunshan Yin, Cheong Min Hong, Yu Chen
  • Patent number: 10770539
    Abstract: An integrated circuit having a fingered capacitor with multiple metal fingers formed in inverted-trapezoid-shaped trenches in a multi-layer structure having a polish stop layer over an ultra-low-K dielectric layer over a low-K dielectric layer over a dielectric cap layer. The ultra-low-K dielectric layer reduces capacitance variations between the fingers, while the polish stop layer prevents metal height variations that would otherwise result from performing CMP directly on the ultra-low-K dielectric layer. The layered structure may include another low-K dielectric layer over the polish stop layer that provides a soft landing for the CMP. The polish stop layer may be removed after the CMP polishing and another ultra-low-K dielectric layer may be formed to encapsulate the tops of the metal fingers in the ultra-low-K dielectric material.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: September 8, 2020
    Assignee: NXP B.V.
    Inventors: Chunshan Yin, Cheong Min Hong, Yu Chen
  • Patent number: 10680087
    Abstract: An integrated circuit has a first gated diode with one or more diode fingers. Each diode finger has an elevated gate, an underlying p-type diffusion, and an underlying n-type diffusion. Each diffusion has a base region and an annular side region located between the base region and the elevated gate such that the diffusions have increased lateral surface areas that support greater current levels for the diode finger, which enables gated diodes to be implemented with fewer fingers and therefore less layout area than equivalent conventional gated diodes that do not have elevated gates. The first gated diode can be implemented with an analogous second gated diode to form ESD-protection circuitry for the integrated circuit.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 9, 2020
    Assignee: NXP B.V.
    Inventors: Cheong Min Hong, Chunshan Yin, Yu Chen
  • Publication number: 20200098850
    Abstract: An integrated circuit having a fingered capacitor with multiple metal fingers formed in inverted-trapezoid-shaped trenches in a multi-layer structure having a polish stop layer over an ultra-low-K dielectric layer over a low-K dielectric layer over a dielectric cap layer. The ultra-low-K dielectric layer reduces capacitance variations between the fingers, while the polish stop layer prevents metal height variations that would otherwise result from performing CMP directly on the ultra-low-K dielectric layer. The layered structure may include another low-K dielectric layer over the polish stop layer that provides a soft landing for the CMP. The polish stop layer may be removed after the CMP polishing and another ultra-low-K dielectric layer may be formed to encapsulate the tops of the metal fingers in the ultra-low-K dielectric material.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Chunshan Yin, Cheong Min Hong, Yu Chen
  • Publication number: 20200075751
    Abstract: An integrated circuit has a first gated diode with one or more diode fingers. Each diode finger has an elevated gate, an underlying p-type diffusion, and an underlying n-type diffusion. Each diffusion has a base region and an annular side region located between the base region and the elevated gate such that the diffusions have increased lateral surface areas that support greater current levels for the diode finger, which enables gated diodes to be implemented with fewer fingers and therefore less layout area than equivalent conventional gated diodes that do not have elevated gates. The first gated diode can be implemented with an analogous second gated diode to form ESD-protection circuitry for the integrated circuit.
    Type: Application
    Filed: September 5, 2018
    Publication date: March 5, 2020
    Inventors: Cheong Min Hong, Chunshan Yin, Yu Chen
  • Patent number: 9281308
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device adjusts gate threshold (Vt) of a field effect transistor (FET) with raised source/drain (S/D) regions. A halo region is formed in a two-step process that includes implanting dopants using conventional implantation techniques and implanting dopants at a specific twist angle. The dopant concentration in the halo region near the active edge of the raised S/D regions is higher and extends deeper than the dopant concentration within the interior region of the raised S/D regions. As a result, Vt near the active edge region is adjusted and different from the Vt at the active center regions, thereby achieving same or similar Vt for a FET with different width.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: March 8, 2016
    Assignee: Globalfoundries Singapore Pte., Ltd.
    Inventors: Chunshan Yin, Guangyu Huang, Elgin Quek, Jae Gon Lee, Kian Ming Tan
  • Patent number: 9087813
    Abstract: A method for forming a semiconductor device is disclosed. The method includes providing a substrate prepared with a second gate structure. An inter-gate dielectric is formed on the substrate and over the second gate. A first gate is also formed. The first gate is adjacent to and separated from the second gate by the inter-gate dielectric. The substrate is patterned to form a split gate structure with the first and second adjacent gates. The split gate structure is provided with an e-field equalizer adjacent to the first gate. The e-field equalizer improves uniformity of e-field across the first gate during operation.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: July 21, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Shyue Seng Tan, Lee Wee Teo, Chunshan Yin
  • Publication number: 20140332902
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device adjusts gate threshold (Vt) of a field effect transistor (FET) with raised source/drain (S/D) regions. A halo region is formed in a two-step process that includes implanting dopants using conventional implantation techniques and implanting dopants at a specific twist angle. The dopant concentration in the halo region near the active edge of the raised S/D regions is higher and extends deeper than the dopant concentration within the interior region of the raised S/D regions. As a result, Vt near the active edge region is adjusted and different from the Vt at the active center regions, thereby achieving same or similar Vt for a FET with different width.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventors: Chunshan Yin, Guangyu Huang, Elgin Quek, Jae Gon Lee, Kian Ming Tan
  • Patent number: 8824208
    Abstract: A non-volatile memory device includes a floating gate with pyramidal-shaped silicon nanocrystals as electron storage elements. Electrons tunnel from the pyramidal-shaped silicon nanocrystals through a gate oxide layer to a control gate of the non-volatile memory device. The pyramidal shape of each silicon nanocrystal concentrates an electrical field at its peak to facilitate electron tunneling. This allows an erase process to occur at a lower tunneling voltage and shorter tunneling time than that of prior art devices.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: September 2, 2014
    Assignee: Globalfoundries Singapore PTE. Ltd.
    Inventors: Elgin Quek, Chunshan Yin, Shyue Seng Tan, Jae Gon Lee, Chung Foong Tan
  • Patent number: 8785287
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device adjusts gate threshold (Vt) of a field effect transistor (FET) with raised source/drain (S/D) regions. A halo region is formed in a two-step process that includes implanting dopants using conventional implantation techniques and implanting dopants at a specific twist angle. The dopant concentration in the halo region near the active edge of the raised S/D regions is higher and extends deeper than the dopant concentration within the interior region of the raised S/D regions. As a result, Vt near the active edge region is adjusted and different from the Vt at the active center regions, thereby achieving same or similar Vt for a FET with different width.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 22, 2014
    Assignee: Globalfoundries Singapore Pte, Ltd.
    Inventors: Chunshan Yin, Guangyu Huang, Elgin Quek, Jae Gon Lee, Kian Ming Tan
  • Publication number: 20140151775
    Abstract: A method for forming a semiconductor device is disclosed. The method includes providing a substrate prepared with a second gate structure. An inter-gate dielectric is formed on the substrate and over the second gate. A first gate is also formed. The first gate is adjacent to and separated from the second gate by the inter-gate dielectric. The substrate is patterned to form a split gate structure with the first and second adjacent gates. The split gate structure is provided with an e-field equalizer adjacent to the first gate. The e-field equalizer improves uniformity of e-field across the first gate during operation.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: GLOBAL FOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng TAN, Lee Wee TEO, Chunshan YIN
  • Patent number: 8735984
    Abstract: FinFET devices are formed with body contact structures enabling the fabrication of such devices having different gate threshold voltages (Vt). A body contact layer is formed to contact the gate electrode (contact) enabling a forward body bias and a reduction in Vt. Two example methods of fabrication (and resulting structures) are provided. In one method, the gate electrode (silicon-based) and body contact layer (silicon) are connected by growing epitaxy which merges the two structures forming electrical contact. In another method, a via is formed that intersects with the gate electrode (suitable conductive material) and body contact layer and is filled with conductive material to electrically connect the two structures. As a result, various FinFETs with different Vt can be fabricated for different applications.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: May 27, 2014
    Assignee: Globalfoundries Singapore PTE, Ltd.
    Inventors: Chunshan Yin, Kian Ming Tan, Jae Gon Lee
  • Patent number: 8691638
    Abstract: A method of forming a semiconductor device is presented. The method includes providing a substrate. The method further includes forming a gate stack having a gate electrode on the substrate, which includes forming a metal gate electrode layer. A buffer gate electrode layer is formed on top of the metal gate electrode layer and a top gate electrode layer having a poly-silicon alloy is formed over the metal gate electrode layer.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 8, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng Tan, Chunshan Yin
  • Patent number: 8674457
    Abstract: A method (and semiconductor device) of fabricating a semiconductor device provides a field effect transistor (FET) with reduced gate contact resistance (and series resistance) for improved device performance. An impurity is implanted or deposited in the gate stack in an impurity region between the metal gate electrode and the gate contact layer. An anneal process is performed that converts the impurity region into a segregation layer which lowers the schottky barrier height (SBH) of the interface between the metal gate electrode (e.g., silicide) and gate contact layer (e.g., amorphous silicon). This results in lower gate contact resistance and effectively lowers the device's AC Reff.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 18, 2014
    Assignee: Globalfoundries Singapore PTE., Ltd.
    Inventors: Eng Huat Toh, Elgin Quek, Chunshan Yin, Chung Foong Tan, Jae Gon Lee
  • Patent number: 8647946
    Abstract: A method for forming a semiconductor device is disclosed. The method includes providing a substrate prepared with a second gate structure. An inter-gate dielectric is formed on the substrate and over the second gate. A first gate is also formed. The first gate is adjacent to and separated from the second gate by the inter-gate dielectric. The substrate is patterned to form a split gate structure with the first and second adjacent gates. The split gate structure is provided with an e-field equalizer adjacent to the first gate. The e-field equalizer improves uniformity of e-field across the first gate during operation.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: February 11, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Shyue Seng Tan, Lee Wee Teo, Chunshan Yin
  • Patent number: 8633081
    Abstract: A device includes a substrate with a device region on which a transistor is formed. The device region includes active edge regions and an active center region which have different oxidation growth rates. A growth rate modifier (GRM) comprising dopants which modifies oxidation growth rate is employed to produce a gate oxide layer which has a uniform thickness. The GRM may enhance or retard the oxidation growth, depending on the type of dopants used. Fluorine dopants enhance oxidation growth rate while nitrogen dopants retard oxidation growth rate.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: January 21, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chunshan Yin, Palanivel Balasubramaniam, Jae Gon Lee, Elgin Quek
  • Publication number: 20130328118
    Abstract: A non-volatile memory device includes a floating gate with pyramidal-shaped silicon nanocrystals as electron storage elements. Electrons tunnel from the pyramidal-shaped silicon nanocrystals through a gate oxide layer to a control gate of the non-volatile memory device. The pyramidal shape of each silicon nanocrystal concentrates an electrical field at its peak to facilitate electron tunneling. This allows an erase process to occur at a lower tunneling voltage and shorter tunneling time than that of prior art devices.
    Type: Application
    Filed: May 10, 2013
    Publication date: December 12, 2013
    Applicant: Globalfoundries Singapore PTE. LTD.
    Inventors: Elgin Quek, Chunshan Yin, Shyue Seng Tan, Jae Gon Lee, Chung Foong Tan
  • Patent number: 8563386
    Abstract: A method of manufacturing an integrated circuit system includes: providing a substrate having a channel region; forming a gate stack over a portion of the channel region with the gate stack having a floating gate for storing an electrical charge; forming a source recess in the substrate adjacent to the gate stack; and forming a source by layering a first bandgap material in the source recess.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: October 22, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chung Foong Tan, Eng Huat Toh, Jae Gon Lee, Chunshan Yin, Lakshmi Bera
  • Patent number: 8530310
    Abstract: A method for forming a device is presented. A substrate prepared with a feature having first and second adjacent surfaces is provided. A device layer is formed on the first and second adjacent surfaces of the feature. A first portion of the device layer over the first adjacent surface includes nano-crystals, whereas a second portion of the device layer over the second adjacent surface is devoid of nano-crystals.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 10, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Lee Wee Teo, Chunshan Yin, Shyue Seng Tan, Chung Foong Tan, Jae Gon Lee, Elgin Quek, Purakh Raj Verma