Patents by Inventor Clarence Filsfils

Clarence Filsfils has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220376987
    Abstract: An apparatus and method for path creation element driven dynamic setup of forwarding adjacencies and explicit path. In one embodiment of the method, a node receives an instruction to create a tunnel between the node and another node. The node creates or initiates the creation of the tunnel in response to receiving the instruction, wherein the tunnel comprises a plurality of nodes in data communication between the node and the other node. The node maps a first identifier (ID) to information relating to the tunnel. The node advertises the first ID to other nodes in a network of nodes.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 24, 2022
    Inventors: Stefano B. Previdi, Clarence Filsfils
  • Patent number: 11489756
    Abstract: Various systems and methods for using strict path forwarding. For example, one method involves receiving an advertisement at a node. The advertisement includes a segment identifier (SID). In response to receiving the advertisement, the node determines whether the SID is a strict SID or not. If the SID is a strict SID, the node generates information, such as forwarding information that indicates how to forward packets along a strict shortest path corresponding to the strict SID.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: November 1, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Peter Psenak, Robert Hanzl, Clarence Filsfils, Ketan Jivan Talaulikar
  • Patent number: 11483230
    Abstract: Aspects described herein include a method for use with a software-defined network controller, as well as an associated computer program product and system. The method comprises assigning a segment identifier to an endpoint node within a destination domain of a plurality of domains. Adjacent domains of the plurality of domains are connected via a respective set of two or more domain border routers. The method further comprises assigning a respective segment identifier to each domain. Each domain border router advertises the segment identifiers of the respective two adjacent domains. The method further comprises, responsive to a request from a headend node within a source domain of the plurality of domains, computing a path from the headend node to the endpoint node. The path includes (i) the segment identifiers of any domains between the headend node and the endpoint node, and (ii) the segment identifier of the endpoint node.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: October 25, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Clarence Filsfils, Francois Clad, Muthurajah Sivabalan, Zafar Ali
  • Publication number: 20220329518
    Abstract: A network node receives a data packet. In response to receiving the data packet, the network node performs a lookup on a label stack of the data packet to determine a next hop for the data packet. The network node scans the label stack to identify a Structured Entropy Label (SEL). The SEL includes a Path Tracing Indicator (PTI). The network node computes Midpoint Compressed Data (MCD) as a result of the PTI being set to a pre-defined value. The network node records the MCD in a MCD stack of the data packet by shifting the MCD stack and stamping the MCD on top of the MCD stack. The network node transmits the data packet to the next hop with the recorded MCD stack. The network sink node encapsulates the received data packet to generate an encapsulated data packet and transmits the data packet.
    Type: Application
    Filed: November 11, 2021
    Publication date: October 13, 2022
    Inventors: Clarence Filsfils, Ahmed Mohamed Ahmed Abdelsalam, Rakesh Gandhi, Pablo Camarillo Garvia
  • Patent number: 11463561
    Abstract: In one embodiment, new Segment Routing capabilities are used in the steering of packets through Segment Routing nodes in a network. A Segment List includes a set of one or more Segment List (SL) Groups, each of which identifies one or more Segments contiguously or non-contiguously stored in the Segment List (or stored across multiple Segment Lists) of a Segment Routing packet. Each SL Group typically includes one Segment that is encoded as a Segment Identifier, and may include Segments that are Extended Values. The steering order of SL Groups is not required to be the same order as they are listed in the Segment List, as the value of Segments Left may be increased, remain the same, or decreased (possibly to skip a next SL Group) and possibly based on the result of an evaluation of a conditional expression.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 4, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Francois Clad, Pablo Camarillo Garvia, David Delano Ward
  • Publication number: 20220303366
    Abstract: In one embodiment, Ethernet Virtual Private Network (EVPN) is implemented using Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) underlay network and SRv6-enhanced Border Gateway Protocol (BGP) signaling. A particular route associated with a particular Internet Protocol Version 6 (IPv6) Segment Routing (SRv6) Segment Identifier (SID) is advertised in a particular route advertisement message of a routing protocol (e.g., BGP). The SID includes encoding representing a particular Ethernet Virtual Private Network (EVPN) Layer 2 (L2) flooding Segment Routing end function of the particular router and a particular Ethernet Segment Identifier (ESI), with the particular SID including a routable prefix to the particular router. The particular router receives a particular packet including the particular SID; and in response, the particular router performs the particular EVPN end function on the particular packet.
    Type: Application
    Filed: June 9, 2022
    Publication date: September 22, 2022
    Inventors: Patrice Brissette, Clarence Filsfils, Darren Dukes, Gaurav Dawra, Francois Clad, Pablo Camarillo Garvia
  • Publication number: 20220294729
    Abstract: In one embodiment, a method includes a method includes receiving, by a headend node, network traffic. The method also includes determining, by the headend node, that the network traffic matches a service route. The method further includes steering, by the headend node, the network traffic into an SR-TE policy. The SR-TE policy is associated with the service route and includes a security level constraint.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Francois Clad, David Delano Ward, Clarence Filsfils
  • Patent number: 11445048
    Abstract: In one embodiment, a method includes identifying, by a network component, a first segment identifier (SID) within a SID list. The first SID includes a first SID block and a first micro SID (uSID). The method also includes initializing, by the network component, a packing list of a uSID carrier with the first uSID of the first SID and initializing, by the network component, a packing block of the uSID carrier with the first SID block of the first SID. The method further includes initializing, by the network component, a remaining packing capacity of the packing list with a carrier capacity of the first SID and initializing, by the network component, an empty compressed SID list.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: September 13, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Francois Clad, Pablo Camarillo Garvia, Siva Sivabalan, Syed Kamran Raza
  • Publication number: 20220286395
    Abstract: In one embodiment, Segment Routing Internet Protocol Version 6 (SRv6) micro segments (“uSIDs”) are included in destination addresses, and possibly in other Segment Identifiers (“SIDs”), of packets transported through a network, and invoking corresponding network behavior, including, but not limited to, realization of corresponding network slices. In one embodiment, network nodes are configured to perform differential network slice realization functionality based on values slice-representative value(s) provided by global and/or local uSIDs of packets. This configuration may be defined by a controller in the network and/or routing protocol advertisements. Responsive to a received packet, a network node identifies and performs the corresponding network slice realization functionality based on slice-representative value(s) provided by one or more global and/or local uSIDs of the destination address of the received packet.
    Type: Application
    Filed: November 3, 2021
    Publication date: September 8, 2022
    Applicant: Cisco Technology, Inc., a California corporation
    Inventors: Rakesh GANDHI, Clarence FILSFILS, Zafar ALI, Patrice BRISSETTE
  • Patent number: 11438445
    Abstract: In one embodiment, a Segment Routing network node provides efficiencies in processing and communicating Internet Protocol packets in a network. This Segment Routing node typically advertises (e.g., using Border Gateway Protocol) its Segment Routing processing capabilities, such as Penultimate Segment Pop (PSP) and/or Ultimate Segment Pop (USP) of a Segment Routing Header (including in the context of a packet that has multiple Segment Routing Headers). Subsequently, an Internet Protocol Segment Routing packet having multiple Segment Routing Headers is received. The packet is processed according to a Segment Routing function, with is processing including removing a first one of the Segment Routing Headers and forwarding the resultant Segment Routing packet. The value of the Segments Left field in the first Segment Routing Header identifies to perform PSP when the value is one, to perform USP when the value is zero, or to perform other processing.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: September 6, 2022
    Assignee: Cisco Technology, Inc.
    Inventors: Ahmed Refaat Bashandy, Syed Kamran Raza, Jisu Bhattacharya, Clarence Filsfils
  • Publication number: 20220272032
    Abstract: Various implementations disclosed herein enable malleable routing for data packets. For example, in various implementations, a method of routing a type of data packets is performed by a device. In some implementations, the device includes a non-transitory memory and one or more processors coupled with the non-transitory memory. In some implementations, the method includes determining a routing criterion to transmit a set of data packets across a network. In some implementations, the method includes identifying network nodes and communication links in the network that satisfy the routing criterion. In some implementations, the method includes determining a route for the set of data packets through the network nodes and the communication links that satisfy the routing criterion. In some implementations, the method includes configuring the network nodes that are on the route with configuration information that allows the set of data packets to propagate along the route.
    Type: Application
    Filed: March 3, 2022
    Publication date: August 25, 2022
    Applicant: Cisco Technology, Inc.
    Inventors: Clarence Filsfils, Peter Psenak, Francois Clad, Jose Antonio Liste
  • Patent number: 11424987
    Abstract: An apparatus and method for path creation element driven dynamic setup of forwarding adjacencies and explicit path. In one embodiment of the method, a node receives an instruction to create a tunnel between the node and another node. The node creates or initiates the creation of the tunnel in response to receiving the instruction, wherein the tunnel comprises a plurality of nodes in data communication between the node and the other node. The node maps a first identifier (ID) to information relating to the tunnel. The node advertises the first ID to other nodes in a network of nodes.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 23, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Stefano B. Previdi, Clarence Filsfils
  • Patent number: 11424986
    Abstract: In one embodiment, a method, by a network apparatus of a first domain network, includes receiving one or more packets from an access network, determining a classification for the packets based on the accounting information, selecting, based on the determined classification, a policy configuration from a plurality of policy configurations for processing the packets, encapsulating the packets with one or more segment identifiers in accordance with the selected policy configuration, and sending the encapsulated packets to a network slice or a second network slice in a second domain network based on the one or more segment identifiers.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 23, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Francois Clad, Pablo Camarillo Garvia, Ahmed Mohamed Ahmed Abdelsalam
  • Publication number: 20220263747
    Abstract: Various systems and methods for using strict path forwarding. For example, one method involves receiving an advertisement at a node. The advertisement includes a segment identifier (SID). In response to receiving the advertisement, the node determines whether the SID is a strict SID or not. If the SID is a strict SID, the node generates information, such as forwarding information that indicates how to forward packets along a strict shortest path corresponding to the strict SID.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 18, 2022
    Inventors: Peter Psenak, Robert Hanzl, Clarence Filsfils, Ketan Jivan Talaulikar
  • Patent number: 11418435
    Abstract: The present technology pertains to a group-based network policy using Segment Routing over an IPv6 dataplane (SRv6). After a source application sends a packet, an ingress node can receive the packet, and if the source node is capable, it can identify an application policy and apply it. The ingress node indicates that the policy has been applied by including policy bits in the packet encapsulation. When the packet is received by the egress node, it can determine whether the policy was already applied, and if so, the packet is forward to the destination application. If the egress node determines that the policy has not be applied the destination application can apply the policy. Both the ingress node and egress nodes can learn of source application groups, destination application groups, and applicable policies through communication with aspects of the segment routing fabric.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: August 16, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Ahmed Mohamed Ahmed Abdelsalam, Francois Clad, Pablo Camarillo Garvia, Kiran Sasidharan Pillai
  • Patent number: 11411948
    Abstract: In one embodiment, an apparatus of a LISP environment includes one or more processors and computer-readable non-transitory storage media coupled to the one or more processors. The computer-readable non-transitory storage media include instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including receiving an attestation token from a first component of the LISP environment. The operations also include encoding the attestation token using a LISP message format. The operations further include distributing the encoded attestation token with a LISP signaling message to a third component of the LISP environment.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: August 9, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Marc Portoles Comeras, David Delano Ward, Alberto Rodriguez Natal
  • Patent number: 11405295
    Abstract: The present technology is directed to a scalable solution for end-to-end performance delay measurement for Segment Routing Policies on both SR-MPLS and SRv6 data planes. The scalability of the solution stems from the use of distributed PM sessions along SR Policy ECMP paths. This is achieved by dividing the SR policy into smaller sections comprised of SPT trees or sub-paths, each of which is associated with a Root-Node. Downstream SID List TLVs may be used in Probe query messages for signaling SPT information to the Root-Nodes Alternatively, this SPT signaling may be accomplished by using a centralized controller. Root-Nodes are responsible for dynamically creating PM sessions and measuring delay metrics for their associated SPT tree section. The root-nodes then send the delay metrics for their local section to an ingress PE node or to a centralized controller using delay metric TLV field of the response message.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: August 2, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Rakesh Gandhi, Tarek Saad, Sagar Soni, Patrick Khordoc
  • Publication number: 20220232112
    Abstract: In one embodiment, a Segment Routing network node provides efficiencies in processing and communicating Internet Protocol packets in a network. This Segment Routing node typically advertises (e.g., using Border Gateway Protocol) its Segment Routing processing capabilities, such as Penultimate Segment Pop (PSP) and/or Ultimate Segment Pop (USP) of a Segment Routing Header (including in the context of a packet that has multiple Segment Routing Headers). Subsequently, an Internet Protocol Segment Routing packet having multiple Segment Routing Headers is received. The packet is processed according to a Segment Routing function, with is processing including removing a first one of the Segment Routing Headers and forwarding the resultant Segment Routing packet. The value of the Segments Left field in the first Segment Routing Header identifies to perform PSP when the value is one, to perform USP when the value is zero, or to perform other processing.
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Inventors: Ahmed Refaat Bashandy, Jisu Bhattacharya, Syed Kamran Raza, Clarence Filsfils
  • Patent number: 11388088
    Abstract: In one embodiment, segment routing (SR) network processing of packets is performed which includes operations signaling and processing of packets in manners providing processing and/or memory efficiencies. One embodiment includes acquiring a segment routing particular packet by a particular router in a network. Responsive to the particular router data plane ascertained during fast path processing by a fast path processing unit that the segment routing particular packet is to be Operations, Administration, and Maintenance (OAM) processed by a different processing unit in the particular router, communicating a time stamp of a current time and the segment routing particular packet including a segment routing header that includes OAM signaling from said fast path processing to the different processing unit, with fast path processing being hardware-based packet processing by the fast path processing unit. The segment routing particular packet is OAM processing by the different processing unit.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 12, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Clarence Filsfils, Zafar Ali, Syed Kamran Raza, Ahmed Refaat Bashandy, Nagendra Kumar Nainar, Carlos M. Pignataro, Jaganbabu Rajamanickam, Rakesh Gandhi, Bhupendra Yadav, Faisal Iqbal
  • Patent number: 11374863
    Abstract: A system and method are disclosed for using segment routing (SR) in native IP networks. The method involves receiving a packet. The packet is an IP packet and includes an IP header. The method also involves updating the packet. Updating the packet involves writing information, including a segment routing segment identifier, to the destination address of the packet.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 28, 2022
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Stefano B. Previdi, Clarence Filsfils