Patents by Inventor Claudio Filippone

Claudio Filippone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200219631
    Abstract: Various exemplary embodiments of a power conversion system for converting thermal energy from a heat source to electricity are disclosed. In one exemplary embodiment, the power conversion system may include a substantially sealed chamber having an inner shroud having an inlet and an outlet and defining an internal passageway between the inlet and the outlet through which a working fluid passes. The sealed chamber may also include an outer shroud substantially surrounding the inner shroud, such that the working fluid exiting the outlet of the inner shroud returns to the inlet of the inner shroud in a closed-loop via a return passageway formed between an external surface of the inner shroud and an internal surface of the outer shroud. The power conversion system may further include a source heat exchanger disposed in the internal passageway of the inner shroud, the source heat exchanger being configured to at least partially receive a heat transmitting element.
    Type: Application
    Filed: August 31, 2018
    Publication date: July 9, 2020
    Inventor: Claudio Filippone
  • Publication number: 20200189625
    Abstract: Various embodiments of a locomotive waste heat recovery system for charging an auxiliary battery, independent of the locomotive electric generator, are disclosed. The auxiliary battery is charged by a locomotive waste heat recovery system to supplement and supply the electric power normally provided by the locomotive battery during a shutdown condition caused by a locomotive auto engine start stop (AESS) system. The auxiliary battery is charged by recovery and conversion of waste thermal energy during locomotive engine operations, and its stored electric power is utilized to supply selected electrical loads during a prolonged engine shutdown condition. Accordingly, the locomotive battery can preserve its stored power to be exclusively utilized for locomotive engine start, which may decrease operational disruptions and increase the life of the locomotive battery, and thereby reducing the overall operating costs associated with the battery maintenance efforts.
    Type: Application
    Filed: August 16, 2018
    Publication date: June 18, 2020
    Inventor: Claudio Filippone
  • Publication number: 20200141353
    Abstract: Embodiments in accordance with the present disclosure provide systems and methods for a waste heat recovery and conversion. The waste heat recovery and conversion system includes a housing non-invasively mountable onto an engine. The waste heat recovery and conversion system also includes a power conversion unit (PCU) entirely within the housing. The PCU includes heat exchangers, an expander, an electrical power generator, and a fluid pump. The heat exchangers, the expander, the fluid pump, and the fluid reservoir form a thermodynamic loop that drives the electrical power generator using thermal energy from waste heat. Under various configurations the waste heat recovery and conversion system offer pollutant reduction features all together with fuel savings.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventor: Claudio Filippone
  • Patent number: 10544753
    Abstract: Embodiments in accordance with the present disclosure provide systems and methods for a waste heat recovery and conversion. The waste heat recovery and conversion system includes a housing non-invasively mountable onto an engine. The waste heat recovery and conversion system also includes a power conversion unit (PCU) entirely within the housing. The PCU includes heat exchangers, an expander, an electrical power generator, and a fluid pump. The heat exchangers, the expander, the fluid pump, and the fluid reservoir form a thermodynamic loop that drives the electrical power generator using thermal energy from waste heat. Under various configurations the waste heat recovery and conversion system offer pollutant reduction features all together with fuel savings.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 28, 2020
    Inventor: Claudio Filippone
  • Publication number: 20190316846
    Abstract: Various embodiments of a waste heat recovery and conversion system are disclosed. In one exemplary embodiment, the waste heat recovery system may include a heat exchanger for transferring heat from a first fluid to a second fluid and a power conversion unit configured to convert the energy transferred from the first fluid to the second fluid into usable energy. The heat exchanger may include an outer duct defining an inlet and an outlet through which the first fluid flows in and out, respectively, of the outer duct. The heat exchanger may also include an inner duct disposed inside the outer duct and defining an inner channel inside the inner duct and an outer channel between an outer surface of the inner duct and an inner surface of the outer duct. The inner duct may define an internal flow channel through which the second fluid flows to exchange heat energy with the first fluid.
    Type: Application
    Filed: March 19, 2019
    Publication date: October 17, 2019
    Inventor: Claudio FILIPPONE
  • Publication number: 20190256113
    Abstract: Various embodiments of an autonomous rail vehicle that can travel ahead of a locomotive at a distance proportional to the locomotive's stopping capability are disclosed. The rail vehicle may scan its surroundings, gauges track conditions, and communicates with locomotive operators of the scanned results in real-time to timely enable activation of the locomotive's emergency brakes in case of detection of off-normal track conditions. The rail vehicle may paired with the locomotive and provides eyes to locomotive operators so that they can have information on tracks viability well ahead of the locomotive.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 22, 2019
    Inventor: Claudio Filippone
  • Publication number: 20190192755
    Abstract: Various embodiments of a medical device for displacing a bodily fluid inside a patient's body and the related methods are disclosed. In one exemplary embodiment, the medical device may include a source heat exchanger containing a heat generating in source and being configured to transfer heat from the heat generating source to a working fluid. The medical device also includes a hollow shaft comprising a plurality of permanent magnets, an impeller shroud disposed inside the hollow shaft, where the impeller shroud defines an internal passageway through which the bodily fluid passes through. The medical device further includes an impeller disposed inside the internal passageway of the impeller shroud, where the impeller is magnetically coupled to the permanent magnets of the hollow shaft.
    Type: Application
    Filed: August 14, 2017
    Publication date: June 27, 2019
    Inventor: Claudio Filippone
  • Patent number: 10229757
    Abstract: The present invention relates generally to electric power and process heat generation using a modular, compact, transportable, hardened nuclear generator rapidly deployable and retrievable, comprising power conversion and electric generation equipment fully integrated within a single pressure vessel housing a nuclear core. The resulting transportable nuclear generator does not require costly site-preparation, and can be transported fully operational. The transportable nuclear generator requires an emergency evacuation area substantially reduced with respect to other nuclear generators as it may be configured for operation with a melt-proof conductive ceramic core which allows decay heat removal even under total loss of coolant scenarios.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: March 12, 2019
    Assignee: LOGOS TECHNOLOGIES LLC
    Inventors: Claudio Filippone, Francesco Venneri
  • Patent number: 10030566
    Abstract: Various embodiments of a waste heat recovery and conversion system are disclosed. The system may include a modular heat exchanger whose energy source is provided by waste heat energy transporting fluids transferring their energy to a working fluid. The working fluid may be in a liquid state contained in a reservoir hydraulically connected to a high-pressure heat transfer chamber. The high-pressure heat transfer chamber may be configured to receive thermal energy utilized to convert the working fluid into a superheated vapor.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: July 24, 2018
    Inventor: Claudio Filippone
  • Publication number: 20180090237
    Abstract: Various embodiments of a transportable nuclear power generator having a plurality of subcritical power modules are disclosed. Each of the plurality of subcritical power modules includes a fuel cartridge, a power conversion unit, and a housing substantially enclosing the fuel cartridge and the power conversion unit. The fuel cartridge contains a nuclear fuel and has a proximal end and a distal end. The power conversion unit includes a compressor turbine disposed at the proximal end of the fuel cartridge and a power turbine disposed at the distal end of the fuel cartridge. At least one of the plurality of subcritical power modules is movable with respect to the other of the plurality of subcritical power modules between a first position and a second position to control criticality of the nuclear fuel contained in the fuel cartridges of the plurality of subcritical power modules.
    Type: Application
    Filed: April 12, 2016
    Publication date: March 29, 2018
    Inventor: Claudio Filippone
  • Publication number: 20180051652
    Abstract: Embodiments in accordance with the present disclosure provide systems and methods for a waste heat recovery and conversion. The waste heat recovery and conversion system includes a housing non-invasively mountable onto an engine. The waste heat recovery and conversion system also includes a power conversion unit (PCU) entirely within the housing. The PCU includes heat exchangers, an expander, an electrical power generator, and a fluid pump. The heat exchangers, the expander, the fluid pump, and the fluid reservoir form a thermodynamic loop that drives the electrical power generator using thermal energy from waste heat. Under various configurations the waste heat recovery and conversion system offer pollutant reduction features all together with fuel savings.
    Type: Application
    Filed: February 1, 2016
    Publication date: February 22, 2018
    Inventor: Claudio Filippone
  • Patent number: 9786396
    Abstract: Various embodiments of a decay heat conversion to electricity system and related methods are disclosed. According to one exemplary embodiment, a decay heat conversion to electricity system may include a spent fuel rack configured to pressurize spent fuel bundles to obtain superheated vapor to drive a turbine-driven pump and fast alternator all submerged with the spent fuel rack and positioned at the bottom of the spent fuel pool for conversion of electricity distributed outside of the spent fuel pool via cables without impairing spent fuel pool operations.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 10, 2017
    Inventor: Claudio Filippone
  • Publication number: 20170184002
    Abstract: Various embodiments of a waste heat recovery and conversion system are disclosed. The system may include a modular heat exchanger whose energy source is provided by waste heat energy transporting fluids transferring their energy to a working fluid. The working fluid may be in a liquid state contained in a reservoir hydraulically connected to a high-pressure heat transfer chamber. The high-pressure heat transfer chamber may be configured to receive thermal energy utilized to convert the working fluid into a superheated vapor. The system may also include a waste heat conversion system hydraulically connected to the heat transfer chamber to receive the superheated vaporized working fluid from the heat transfer chamber. The waste heat conversion system may be configured to expand the superheated working fluid through an expander for the conversion of waste heat energy into useful energy.
    Type: Application
    Filed: March 7, 2017
    Publication date: June 29, 2017
    Inventor: CLAUDIO FILIPPONE
  • Patent number: 9618273
    Abstract: Various embodiments of a waste heat recovery and conversion system are disclosed. The system may include a modular heat exchanger whose energy source is provided by waste heat energy transporting fluids transferring their energy to a working fluid. The working fluid may be in a liquid state contained in a reservoir hydraulically connected to a high-pressure heat transfer chamber. The high-pressure heat transfer chamber may be configured to receive thermal energy utilized to convert the working fluid into a superheated vapor.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: April 11, 2017
    Inventor: Claudio Filippone
  • Publication number: 20160049210
    Abstract: The present invention relates generally to electric power and process heat generation using a modular, compact, transportable, hardened nuclear generator rapidly deployable and retrievable, comprising power conversion and electric generation equipment fully integrated within a single pressure vessel housing a nuclear core. The resulting transportable nuclear generator does not require costly site-preparation, and can be transported fully operational. The transportable nuclear generator requires an emergency evacuation area substantially reduced with respect to other nuclear generators as it may be configured for operation with a melt-proof conductive ceramic core which allows decay heat removal even under total loss of coolant scenarios.
    Type: Application
    Filed: September 12, 2013
    Publication date: February 18, 2016
    Applicant: Logos Technologies LLC
    Inventors: Claudio FILIPPONE, Francesco VENNERI
  • Publication number: 20160047603
    Abstract: Various embodiments of a waste heat recovery and conversion system are disclosed. In one exemplary embodiment, the waste heat recovery system may include a heat exchanger for transferring heat from a first fluid to a second fluid and a power conversion unit configured to convert the energy transferred from the first fluid to the second fluid into usable energy. The heat exchanger may include an outer duct defining an inlet and an outlet through which the first fluid flows in and out, respectively, of the outer duct. The heat exchanger may also include an inner duct disposed inside the outer duct and defining an inner channel inside the inner duct and an outer channel between an outer surface of the inner duct and an inner surface of the outer duct. The inner duct may define an internal flow channel through which the second fluid flows to exchange heat energy with the first fluid.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 18, 2016
    Inventor: Claudio FILIPPONE
  • Publication number: 20150337760
    Abstract: Various embodiments of a converter for use in a combustion engine having a discharge conduit for discharging exhaust combustion gases are disclosed. In one exemplary embodiment, the converter may include a heating chamber being in thermal contact with the discharge conduit and defining a hydraulic channel through which a fluid passes. The converter may also include an inlet port disposed in the heating chamber for receiving the fluid into the heating chamber, and an outlet port disposed in the heating chamber for discharging the fluid from the heating chamber. The heat energy from the exhaust combustion gases is transferred to the fluid while the fluid passes through the hydraulic channel.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventor: Claudio Filippone
  • Patent number: 9097205
    Abstract: Various embodiments of a converter for use in a combustion engine having a discharge conduit for discharging exhaust combustion gases are disclosed. In one exemplary embodiment, the converter may include a heating chamber being in thermal contact with the discharge conduit and defining a hydraulic channel through which a fluid passes. The converter may also include an inlet port disposed in the heating chamber for receiving the fluid into the heating chamber, and an outlet port disposed in the heating chamber for discharging the fluid from the heating chamber. The heat energy from the exhaust combustion gases is transferred to the fluid while the fluid passes through the hydraulic channel.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 4, 2015
    Inventor: Claudio Filippone
  • Patent number: 9048617
    Abstract: A system for circulating an alkali vapor to operate as, for example, a gain medium in a diode pumped alkali laser. The system includes a pump configured to pump a buffer gas to a metal source. A source heat exchanger heats the alkali metal source to produce a metal vapor that flows with the buffer gas. An action chamber receives the metal vapor and buffer gas combination and contains the combination while the metal vapor performs its required functions. The metal vapor and buffer combination continue to flow to a metal vapor trap and heat exchanger that cools the metal vapor and buffer gas combination. The metal vapor trap collects alkali metal condensate as the combination cools. The diffuser transport channel provides an inflow of clean buffer gas to the pump. The pump provides a circulating gas flow through the closed loop system.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 2, 2015
    Assignee: Logos Technologies, LLC
    Inventors: Jason Zweiback, Claudio Filippone
  • Publication number: 20150096722
    Abstract: A cooling device for cooling heat-generating devices such as disk laser according to a desired thermal profile to generate desired edge effects and optical properties. An example cooling device includes a back plate for supporting the heat-generating device. The back plate is part of a cooling device housing with a wall providing an enclosure that contains a nozzle member. The nozzle member encloses the cooling device housing on a side opposite the back plate. A nozzle coolant surface is formed on an end of the nozzle member. The nozzle coolant surface extends outward from its center to an edge to form a coolant chamber with the back plate. Coolant fluid may enter the coolant chamber through inlet paths formed in the nozzle member and exit through a chamber gap between the nozzle coolant surface edge and inside of the housing wall.
    Type: Application
    Filed: March 4, 2013
    Publication date: April 9, 2015
    Inventors: Jason Zweiback, Claudio Filippone