Patents by Inventor Clinton Carlisle

Clinton Carlisle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11467416
    Abstract: Illuminations systems that separate different colors into laterally displaced beams may be used to direct different color image content into an eyepiece for displaying images in the eye. Such an eyepiece may be used, for example, for an augmented reality head mounted display. Illumination systems may be provided that utilize one or more waveguides to direct light from a light source towards a spatial light modulator. Light from the spatial light modulator may be directed towards an eyepiece. Some aspects of the invention provide for light of different colors to be outcoupled at different angles from the one or more waveguides and directed along different beam paths.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 11, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Hui-Chuan Cheng, Chulwoo Oh, Clinton Carlisle, Michael Anthony Klug, William J. Molteni, Jr.
  • Patent number: 11461961
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: October 4, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Patent number: 11435572
    Abstract: An image display system includes an optical subsystem configured to emit a first light beam and a second light beam, wherein the first light beam illuminates a first portion of a composite field of view and the second beam illuminates a second portion of the composite field of view. A scanning mirror is positioned to intercept and reflect the first light beam and the second light beam. The system also has a waveguide with at least one input coupling optical element for receiving the first light beam and the second light beam into the waveguide. The waveguide also has an output coupling optical element for projecting a plurality of output light beams derived from the first light beam and the second light beam from the waveguide to illuminate the composite field of view.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 6, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Li-Chuen Yeoh, Lionel Ernest Edwin, Barak Freedman, Vaibhav Mathur, Xiaoyang Zhang, Timothy Mark Dalrymple, Clinton Carlisle, Chulwoo Oh, Philip Premysler
  • Patent number: 11391947
    Abstract: An optical device comprising may include a light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The light coupled into the light turning element may be reflected by the end reflector and/or reflected from the second surface towards the first surface.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: July 19, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Chulwoo Oh, Kevin Richard Curtis
  • Publication number: 20220221710
    Abstract: An example head-mounted display device includes a light projector, an optical assembly arranged to direct light from a light projector to a user, and an actuator module. The optical assembly includes a variable focus lens assembly including a rigid refractive component, a shaper ring defining an aperture, and a flexible lens membrane between the shaper ring and the rigid refractive component and covering the aperture. The refractive component, the shaper ring, and the lens membrane are arranged along an axis. The refractive component and the lens membrane define a chamber containing a volume of fluid. The actuator module is configured to adjust an optical power of the variable focus lens by moving the shaper ring relative to the refractive component along the axis, such that a curvature of the lens membrane in the aperture is modified.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 14, 2022
    Inventors: Timothy Mark DALRYMPLE, David TINCH, Michael Anthony KLUG, Clinton CARLISLE, Jason Donald MARENO, Arno Leon KONINGS, Christopher Peter COUSTE, Charles Robert SCHABACKER, Bach NGUYEN, Christopher John LANING, Roman PATSCHEIDER
  • Publication number: 20220171190
    Abstract: A wearable display system includes a light projection system having one or more emissive microdisplays, e.g., micro-LED displays. The light projection system projects time-multiplexed left-eye and right-eye images, which pass through an optical router having a polarizer and a switchable polarization rotator. The optical router is synchronized with the generation of images by the light projection system to impart a first polarization to left-eye images and a second different polarization to right-eye images. Light of the first polarization is incoupled into an eyepiece having one or more waveguides for outputting light to one of the left and right eyes, while light of the second polarization may be incoupled into another eyepiece having one or more waveguides for outputting light to the other of the left and right eyes. Each eyepiece may output incoupled light with variable amounts of wavefront divergence, to elicit different accommodation responses from the user's eyes.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 2, 2022
    Inventors: Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Publication number: 20220137418
    Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
  • Publication number: 20220082837
    Abstract: An optical device comprising may include a wedge-shaped light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface that is inclined with respect to the horizontal axis by a wedge angle. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The second surface may be inclined such that a height of the light input surface is less than a height of the side opposite the light input surface.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Hui-Chuan Cheng, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Kevin Richard Curtis, Chulwoo Oh
  • Publication number: 20220075199
    Abstract: Head-mounted virtual and augmented reality display systems include a light projector with one or more emissive micro-displays having a first resolution and a pixel pitch. The projector outputs light forming frames of virtual content having at least a portion associated with a second resolution greater than the first resolution. The projector outputs light forming a first subframe of the rendered frame at the first resolution, and parts of the projector are shifted using actuators, such that physical positions of light output for individual pixels occupy gaps between the old locations of light output for individual pixels. The projector then outputs light forming a second subframe of the rendered frame. The first and second subframes are outputted within the flicker fusion threshold. Advantageously, an emissive micro-display (e.g., micro-LED display) having a low resolution can form a frame having a higher resolution by using the same light emitters to function as multiple pixels of that frame.
    Type: Application
    Filed: December 20, 2019
    Publication date: March 10, 2022
    Inventors: Jahja I. Trisnadi, Clinton Carlisle, Hyunsun Chung, Timothy Mark Dalrymple
  • Publication number: 20220050298
    Abstract: A wearable display system includes one or more emissive micro-displays, e.g., micro-LED displays. The micro-displays may be monochrome micro-displays or full-color micro-displays. The micro-displays may include arrays of light emitters. Light collimators may be utilized to narrow the angular emission profile of light emitted by the light emitters. Where a plurality of emissive micro-displays is utilized, the micro-displays may be positioned at different sides of an optical combiner, e.g., an X-cube prism which receives light rays from different micro-displays and outputs the light rays from the same face of the cube. The optical combiner directs the light to projection optics, which outputs the light to an eyepiece that relays the light to a user's eye. The eyepiece may output the light to the user's eye with different amounts of wavefront divergence, to place virtual content on different depth planes.
    Type: Application
    Filed: December 20, 2019
    Publication date: February 17, 2022
    Inventors: Michael Anthony Klug, Evgeni Poliakov, Jahja I. Trisnadi, Hyunsun Chung, Lionel Ernest Edwin, Howard Russell Cohen, Robert Blake Taylor, Andrew Ian Russell, Kevin Richard Curtis, Clinton Carlisle
  • Patent number: 11249309
    Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: February 15, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
  • Publication number: 20220026719
    Abstract: A head-mounted apparatus include an eyepiece that include a variable dimming assembly and a frame mounting the eyepiece so that a user side of the eyepiece faces a towards a user and a world side of the eyepiece opposite the first side faces away from the user. The dynamic dimming assembly selectively modulates an intensity of light transmitted parallel to an optical axis from the world side to the user side during operation.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: David Manly, Vaibhav Mathur, Clinton Carlisle, Jonathan Alexander Rolon, Chulwoo Oh
  • Publication number: 20210405402
    Abstract: A method for displaying an image using a wearable display system including directing display light from a display towards a user through an eyepiece to project images in the user's field of view, determining a relative location between an ambient light source and the eyepiece, and adjusting an attenuation of ambient light from the ambient light source through the eyepiece depending on the relative location between the ambient light source and the eyepiece.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Inventors: Hui-Chuan Cheng, David Manly, Vaibhav Mathur, Joshua Naaman Haddock, Kevin Messer, Clinton Carlisle
  • Publication number: 20210382317
    Abstract: Illuminations systems that separate different colors into laterally displaced beams may be used to direct different color image content into an eyepiece for displaying images in the eye. Such an eyepiece may be used, for example, for an augmented reality head mounted display. Illumination systems may be provided that utilize one or more waveguides to direct light from a light source towards a spatial light modulator. Light from the spatial light modulator may be directed towards an eyepiece. Some aspects of the invention provide for light of different colors to be outcoupled at different angles from the one or more waveguides and directed along different beam paths.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 9, 2021
    Inventors: Hui-Chuan Cheng, Chulwoo Oh, Clinton Carlisle, Michael Anthony Klug, William J. Molteni, JR.
  • Patent number: 11187900
    Abstract: An optical device comprising may include a wedge-shaped light turning element. The optical device can include a first surface that is parallel to a horizontal axis and a second surface opposite to the first surface that is inclined with respect to the horizontal axis by a wedge angle. The optical device may include a light module that includes a plurality of light emitters. The light module can be configured to combine light for the plurality of emitters. The optical device can further include a light input surface that is between the first and the second surfaces and is disposed with respect to the light module to receive light emitted from the plurality of emitters. The optical device may include an end reflector that is disposed on a side opposite the light input surface. The second surface may be inclined such that a height of the light input surface is less than a height of the side opposite the light input surface.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: November 30, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Hui-Chuan Cheng, Wei Chen Lin, Hyunsun Chung, Jahja I. Trisnadi, Clinton Carlisle, Kevin Richard Curtis, Chulwoo Oh
  • Publication number: 20210350614
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 11, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Patent number: 11169380
    Abstract: A head-mounted apparatus include an eyepiece that include a variable dimming assembly and a frame mounting the eyepiece so that a user side of the eyepiece faces a towards a user and a world side of the eyepiece opposite the first side faces away from the user. The dynamic dimming assembly selectively modulates an intensity of light transmitted parallel to an optical axis from the world side to the user side during operation.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: November 9, 2021
    Assignee: Magic Leap, Inc.
    Inventors: David Manly, Vaibhav Mathur, Clinton Carlisle, Jonathan Alexander Rolon, Chulwoo Oh
  • Patent number: 11170565
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 9, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Publication number: 20210311310
    Abstract: A wearable display system includes one or more nanowire LED micro-displays. The nanowire micro-LED displays may be monochrome or full-color. The nanowire LEDs forming the arrays may have an advantageously narrow angular emission profile and high light output. Where a plurality of nanowire LED micro-displays is utilized, the micro-displays may be positioned at different sides of an optical combiner, for example, an X-cube prism which receives light rays from different micro-displays and outputs the light rays from the same face of the cube. The optical combiner directs the light to projection optics, which outputs the light to an eyepiece that relays the light to a user's eye. The eyepiece may output the light to the user's eye with different amounts of wavefront divergence, to place virtual content on different depth planes.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 7, 2021
    Inventors: Jahja I. Trisnadi, Clinton Carlisle
  • Publication number: 20210286171
    Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 16, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur