Patents by Inventor Clive Svendsen
Clive Svendsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12091650Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.Type: GrantFiled: February 26, 2019Date of Patent: September 17, 2024Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
-
Publication number: 20240254449Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: April 4, 2024Publication date: August 1, 2024Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Publication number: 20240228954Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.Type: ApplicationFiled: December 5, 2023Publication date: July 11, 2024Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
-
Patent number: 11987780Abstract: Described herein is functionalized glass allowing for robust attachment of extracellular matrix proteins (ECM) withstanding extended culturing periods. By first treating glass with a sulfur silane reagent, the treated glass can be activated via an amine-sulfur linker, after which ECM proteins are attached to the linker. The Inventors observed that this glass treatment combination (sulfur silane-linker-ECM) resisted degradation when compared to conventional surface coatings, such as poly-L-orthinine coated glass.Type: GrantFiled: July 13, 2018Date of Patent: May 21, 2024Assignee: Cedars-Sinai Medical CenterInventors: Alexander Laperle, Clive Svendsen
-
Patent number: 11970714Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.Type: GrantFiled: July 2, 2020Date of Patent: April 30, 2024Assignee: Cedars-Sinai Medical CenterInventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
-
Patent number: 11952592Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: February 23, 2022Date of Patent: April 9, 2024Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Patent number: 11877896Abstract: The present invention teaches minimally invasive apparatuses and methods for stabilizing and/or guiding medical instruments used in a variety of medical procedures, including (a) introducing one or more substances into a subject's body, (b) removing one or more substances from a subject's body, (c) manipulating a region of a subject's body, or (d) combinations thereof. Among the many advantages of the inventive apparatuses are their simplicity and adaptability to attach to a variety of retractors.Type: GrantFiled: November 15, 2019Date of Patent: January 23, 2024Assignee: Cedars-Sinai Medical CenterInventors: Pablo Avalos, Doniel Drazin, Clive Svendsen
-
Publication number: 20240009325Abstract: The present disclosure is directed to methods of treating Allan-Herndon-Dudley syndrome comprising administering 3,5-diiodothyropropionic acid (DITPA) to a subject in need thereof, and to administering gene therapy to the subject by introducing normal human MCT8 into the subject's cells in order to increase T3 in the subject's brain.Type: ApplicationFiled: July 11, 2023Publication date: January 11, 2024Inventors: Samuel REFETOFF, Roy WEISS, Khemraj HIRANI, Clive SVENDSEN, Pablo AVALOS, Gad VATINE
-
Publication number: 20230340420Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.Type: ApplicationFiled: January 9, 2023Publication date: October 26, 2023Applicant: CEDARS-SINAI MEDICAL CENTERInventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
-
Publication number: 20230333092Abstract: Described herein are the effects of continuous media perfusion on SC-Chips and the observed activation of pronounced neural tissue growth and vascular recruitment into the neural tissue channel. ALS patient chip overexpression of known neurodegenerative disease biomarkers neurogranin and neurofilament family members are also described and utilized for the invention.Type: ApplicationFiled: September 22, 2021Publication date: October 19, 2023Applicant: CEDARS-SINAI MEDICAL CENTERInventors: Samuel Sances, Clive Svendsen
-
Publication number: 20230174946Abstract: Described herein are particular infection model systems, methods of studying infection, and method of screening compounds in various model systems. Particularly, SARS-CoV-2 is studied in these organ and infection models.Type: ApplicationFiled: April 30, 2021Publication date: June 8, 2023Applicants: CEDARS-SINAI MEDICAL CENTER, THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Barry R. Stripp, Apoorva Mulay, Bindu Konda, Arun Sharma, Clive Svendsen, Vaithilingaraja Arumugaswami, Dhruv Sareen, Hanan Shaharuddin, Victoria Wang, Roberta S. Santos
-
Publication number: 20230159896Abstract: Described herein is a human, cardiovascular platform for assessing cardiotoxicity of novel/existing chemotherapeutic agents that takes advantage of microfluidic organ chip systems to examine interaction between hiPSC-derived cardiovascular cells in an integrated system. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) and human induced pluripotent stem cell derived endothelial cells (hiPSC-ECs) can serve as an in-vitro platform for assessing disease pathology, including infectious disease, evaluate drug efficacy, toxicity, cardiotoxicity and cardioprotection. This includes evaluating VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors and drug efficacy in a viral infection model, including coronaviruses. They are scalable, functionally-active cell types that mimic the cells comprising the myocardium and systemic vasculature.Type: ApplicationFiled: April 30, 2021Publication date: May 25, 2023Applicant: CEDARS-SINAI MEDICAL CENTERInventors: Arun Sharma, Samuel Sances, Clive Svendsen
-
Patent number: 11572545Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.Type: GrantFiled: June 16, 2017Date of Patent: February 7, 2023Assignee: Cedars-Sinai Medical CenterInventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
-
Patent number: 11473061Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: February 1, 2017Date of Patent: October 18, 2022Assignee: Cedars-Sinai Medical CenterInventors: Robert Barrett, Clive Svendsen, Stephan R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani
-
Publication number: 20220282221Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: ApplicationFiled: February 23, 2022Publication date: September 8, 2022Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Patent number: 11359242Abstract: Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, the Inventors compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. The Inventors resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for familial ALS genetic variants and were affected in sporadic ALS. Altogether, the Inventors' findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS.Type: GrantFiled: January 6, 2017Date of Patent: June 14, 2022Assignee: CEDARS-SINAI MEDICAL CENTERInventors: Ritchie Ho, Clive Svendsen
-
Patent number: 11326149Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.Type: GrantFiled: July 31, 2018Date of Patent: May 10, 2022Assignee: EMULATE, INC.Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
-
Patent number: 11253645Abstract: The present invention teaches apparatuses, systems and methods for performing a variety of medical procedures, including those involving introducing one or more substances into a subject's body. In some embodiments, the invention teaches automatically performing guided injections into a tissue site (e.g. spinal cord) of a subject by using one or more electronically operated components including a cannula, a syringe pump, and a stereotactic device.Type: GrantFiled: October 29, 2015Date of Patent: February 22, 2022Assignee: Cedars-Sinai Medical CenterInventors: Pablo Avalos, Doniel Drazin, Clive Svendsen, Michael John Baker, Mark Sasha Drlik
-
Patent number: 11174462Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.Type: GrantFiled: April 17, 2018Date of Patent: November 16, 2021Assignees: EMULATE, Inc., Cedars-Sinai Medical CenterInventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sanees, Clive Svendsen, Daniel Levner, Dhruv Sareen
-
Publication number: 20210024955Abstract: Delivery of glial cell line-derived neurotrophic factor (GDNF) has provided benefits to Parkinsonian patients and is currently being tested in a Phase 1/2a clinical trial for ALS patients. However, chronic trophic factor delivery prohibits dose adjustment or shut off in the event of side effects. To address this, the Inventors engineered a stably integrating, third-generation doxycycline-regulated vector, allowing inducible and reversible expression of a therapeutic molecule Human iPSC-derived neural progenitors were stably transfected with the vector, expanded and transplanted into the adult mouse brain. The Inventors observed that the addition and withdrawal of doxycycline led to GDNF expression that could be induced and reversed multiple times, demonstrating that doxycycline can penetrate the graft and regulate transgene expression in vivo.Type: ApplicationFiled: March 15, 2019Publication date: January 28, 2021Applicant: CEDARS-SINAI MEDICAL CENTERInventors: Clive Svendsen, Joshua Breunig, Aslam Akhtar