Patents by Inventor Conor F. Madigan

Conor F. Madigan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220019109
    Abstract: Liquid ink compositions containing quantum dots for optoelectronic display applications are provided. Also provided are solid films formed by drying the ink compositions, optical elements incorporating the solid films, display devices incorporating the optical elements, and methods of forming the solid films, optical elements, and the devices. Liquid ink compositions and solid films made by drying the liquid ink compositions include one or more blue light-absorbing materials in combination with red light-emitting QDs or green light-emitting QDs.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Applicant: KATEEVA, INC.
    Inventors: Conor F. MADIGAN, Siddharth Harikrishna-Mohan, Florian PSCHENITZKA, Teresa A. RAMOS, Inna GUREVITCH
  • Patent number: 11203207
    Abstract: Improved manufacturing using a printer that deposits a liquid to fabricate a layer having specified thickness includes automated adjustment or print parameters based on ink or substrate characteristics which have been specifically measured or estimated. In one embodiment, ink spreading characteristics are used to select droplet size used to produce a particular layer, and/or to select a specific baseline volume/area or droplet density that is then scaled and/or adjusted to provide for layer homogeneity. In a second embodiment, expected per-droplet particulars are used to interleave droplets in order to carefully control melding of deposited droplets, and so assist with layer homogeneity. The liquid layer is then cured or baked to provide for a permanent structure.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: December 21, 2021
    Assignee: KATEEVA, INC.
    Inventors: Conor F. Madigan, Christopher R. Hauf
  • Patent number: 11181779
    Abstract: Liquid ink compositions containing quantum dots for optoelectronic display applications are provided. Also provided are solid films formed by drying the ink compositions, optical elements incorporating the solid films, display devices incorporating the optical elements, and methods of forming the solid films, optical elements, and the devices. Liquid ink compositions and solid films made by drying the liquid ink compositions include one or more blue light-absorbing materials in combination with red light-emitting QDs or green light-emitting QDs.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: November 23, 2021
    Assignee: Kateeva, Inc.
    Inventors: Conor F. Madigan, Siddharth Harikrishna-Mohan, Florian Pschenitzka, Teresa A. Ramos, Inna Gurevitch
  • Publication number: 20210358783
    Abstract: Apparatus and techniques are described herein for use in manufacturing electronic devices. such as can include organic light emitting diode (OLED) devices. Such apparatus and techniques can include using one or more modules having a controlled environment. For example, a substrate can be received from a printing system located in a first processing environment, and the substrate can be provided a second processing environment, such as to an enclosed thermal treatment module comprising a controlled second processing environment. The second processing environment can include a purified gas environment having a different composition than the first processing environment.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 18, 2021
    Applicant: KATEEVA, INC.
    Inventors: Conor F. Madigan, Eliyahu Vronsky, Alexander Sou-Kang Ko, Justin Mauck
  • Patent number: 11107712
    Abstract: Apparatus and techniques are described herein for use in manufacturing electronic devices. Such as can include organic light emitting diode (OLED) devices. Such apparatus and techniques can include using one or more modules having a controlled environment. For example, a substrate can be received from a printing system located in a first processing environment, and the substrate can be provided a second processing environment, such as to an enclosed thermal treatment module comprising a controlled second processing environment. The second processing environment can include a purified gas environment having a different composition than the first processing environment.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: August 31, 2021
    Inventors: Conor F. Madigan, Eliyahu Vronsky, Alexander Sou-Kang Ko, Justin Mauck
  • Publication number: 20210217828
    Abstract: A method of manufacturing an organic light-emitting diode display comprising a substrate having a well-defined by a confinement structure, the well containing a first electrode and a second electrode spaced from each other, wherein the method may comprise depositing a light-emissive material in the well via ink-jet printing, thereby forming a substantially continuous light-emissive material layer in the well from the deposited light-emissive material, the light-emissive material layer spanning and contained within boundaries of the well, wherein a surface of the light-emissive material layer that faces away from the substrate has a non-planar topography. The method may further comprise positioning a common electrode over the light-emissive material layer.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 15, 2021
    Applicant: KATEEVA, INC.
    Inventor: Conor F. Madigan
  • Publication number: 20210167339
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Application
    Filed: February 10, 2021
    Publication date: June 3, 2021
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Patent number: 10985217
    Abstract: A method of manufacturing an organic light-emitting diode display comprising a substrate having a well defined by a confinement structure, the well containing a first electrode and a second electrode spaced from each other, wherein the method may comprise depositing a light-emissive material in the well via ink-jet printing, thereby forming a substantially continuous light-emissive material layer in the well from the deposited light-emissive material, the light-emissive material layer spanning and contained within boundaries of the well, wherein a surface of the light-emissive material layer that faces away from the substrate has a non-planar topography. The method may further comprise positioning a common electrode over the light-emissive material layer.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 20, 2021
    Assignee: KATEEVA, INC.
    Inventor: Conor F. Madigan
  • Patent number: 10950826
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: March 16, 2021
    Assignee: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Publication number: 20210040595
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Applicant: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20200381675
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Application
    Filed: August 21, 2020
    Publication date: December 3, 2020
    Applicant: Kateeva, Inc.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 10851450
    Abstract: The disclosure relates to a method and apparatus for preventing oxidation or contamination during a circuit printing operation. The circuit printing operation can be directed to OLED-type printing. In an exemplary embodiment, the printing process is conducted at a load-locked printer housing having one or more of chambers. Each chamber is partitioned from the other chambers by physical gates or fluidic curtains. A controller coordinates transportation of a substrate through the system and purges the system by timely opening appropriate gates. The controller may also control the printing operation by energizing the print-head at a time when the substrate is positioned substantially thereunder.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: December 1, 2020
    Assignee: Kateeva, Inc.
    Inventors: Sass Somekh, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 10804417
    Abstract: Ink compositions for forming quantum dot-containing films are provided. Also provided are methods for forming the quantum dot-containing films via inkjet printing and photonic devices that incorporate the quantum dot-containing films as light-emitting layers. The ink compositions include the quantum dots, di(meth)acrylate monomers or a combination of di(meth)acrylate and mono(meth)acrylate monomers, and a one or more multifunctional crosslinking agents.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: October 13, 2020
    Assignee: KATEEVA, INC.
    Inventors: Florian Pschenitzka, Jianglong Chen, Elena Rogojina, Steven Van Slyke, Conor F. Madigan
  • Patent number: 10797270
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: October 6, 2020
    Assignee: KATEEVA, INC.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Patent number: 10784470
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different printhead/substrate scan offsets, offsets between printheads, the use of different nozzle drive waveforms, and/or other techniques. These combinations can be based on repeated, rapid droplet measurements that develop understandings for each nozzle of means and spreads for expected droplet volume, velocity and trajectory, with combinations of droplets being planned based on these statistical parameters. Optionally, random fill variation can be introduced so as to mitigate Mura effects in a finished display device. The disclosed techniques have many possible applications.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 22, 2020
    Assignee: KATEEVA, INC.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan, Gregory Lewis, Alexander Sou-Kang Ko, Valerie Gassend
  • Patent number: 10784472
    Abstract: An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 22, 2020
    Assignee: KATEEVA, INC.
    Inventors: Nahid Harjee, Lucas D. Barkley, Christopher R. Hauf, Eliyahu Vronsky, Conor F. Madigan
  • Publication number: 20200279894
    Abstract: A method of manufacturing an organic light-emitting diode display comprising a substrate having a well defined by a confinement structure, the well containing a first electrode and a second electrode spaced from each other, wherein the method may comprise depositing a light-emissive material in the well via ink-jet printing, thereby forming a substantially continuous light-emissive material layer in the well from the deposited light-emissive material, the light-emissive material layer spanning and contained within boundaries of the well, wherein a surface of the light-emissive material layer that faces away from the substrate has a non-planar topography. The method may further comprise positioning a common electrode over the light-emissive material layer.
    Type: Application
    Filed: May 18, 2020
    Publication date: September 3, 2020
    Applicant: Kateeva, Inc.
    Inventor: Conor F. MADIGAN
  • Patent number: 10707273
    Abstract: A method of manufacturing an organic-light emitting diode (OLED) display can include providing on a substrate a first electrode associated with a first sub-pixel and a second electrode associated with a second sub-pixel, wherein a gap is formed between the first electrode and the second electrode and wherein the first electrode and the second electrode are positioned in a well having boundaries defined by a confinement structure on the substrate. The method can also include depositing in the well with the electrodes positioned therein, active OLED material to form a substantially continuous layer of active OLED material that spans the boundaries of the well such that a surface of the layer of active OLED material that faces away from the substrate has a non-planar topography. The depositing can be via inkjet printing.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: July 7, 2020
    Assignee: Kateeva, Inc.
    Inventor: Conor F. Madigan
  • Publication number: 20200127069
    Abstract: A method of making an organic light-emissive display comprises depositing organic light-emissive material on a material film layer disposed over a plurality of electrodes on a substrate, wherein the plurality of electrodes are disposed consecutively and in alignment on a substrate. The material film layer defines a confinement region having a first surface energy property, the confinement region overlying an area in which the plurality of electrodes are disposed, and a boundary region surrounding the confinement region, the boundary region having a second surface energy property differing from the first surface energy property.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Applicant: KATEEVA, INC.
    Inventor: Conor F. Madigan
  • Publication number: 20200109303
    Abstract: Embodiments described herein provide a print material, comprising a curable precursor mixture; and a plurality of light-scattering particles, wherein a droplet of the print material having diameter of about 30 ?m has a maximum transmission haze at a wavelength less than about 500 nm and a transmission haze at an infrared wavelength up to about 1,600 nm that is less than 60% of the maximum transmission haze. In some cases, a polymer film having thickness of about 20 ?m made from a print material has a maximum transmission haze at a wavelength less than about 500 nm and a transmission haze at an infrared wavelength up to about 1,600 nm that is less than 60% of the maximum transmission haze. A process is also described, including applying the material above to a substrate as a print material and solidifying the print material to form a structure on the substrate.
    Type: Application
    Filed: August 20, 2019
    Publication date: April 9, 2020
    Applicant: Kateeva, Inc.
    Inventors: Teresa A. Ramos, Siddharth Harikrishna-Mohan, Michael Morse, Conor F. Madigan, Christopher D. Favaro