Patents by Inventor Constantinos Nikou

Constantinos Nikou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10420611
    Abstract: Systems and methods for computer-aided alignment and positioning of a prosthesis component onto a target host bone, such as in joint resurfacing arthroplasty, are discussed. A system for can include a processor unit and a user interface unit. The processor unit can receive a target bone model including a first data set representing a target bone surface, and a prosthesis model including a second data set representing a prosthesis surface. The prosthesis, when positioned against the target bone, is configured to at least partially replace the articulation surface. The processor unit can generate an articulation interface representation that indicates spatial misalignment between one or more portions of the prosthesis surface and one or more portions of the target bone surface when the prosthesis model is positioned against the target bone model.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: September 24, 2019
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20190175280
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 13, 2019
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Publication number: 20190133701
    Abstract: Systems and methods for navigation and control of an implant positioning device are discussed. For example, a method can include operations for accessing an implant plan, establishing a 3-D coordinate system, receiving tracking information, generating control signals, and sending the control signals to the implant positioning device. The implant plan can include location and orientation data describing an ideal implant location and orientation in reference to an implant host. The 3-D coordinate system can provide spatial orientation for the implant positioning device and the implant host. The tracking information can identify current location and orientation data within the 3-D coordinate system for the implant positioning device and implant host during a procedure. The control signals can control operation of the implant positioning device to assist a surgeon in positioning the implant according to the implant plan.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Benjamin Oliver MCCANDLESS
  • Publication number: 20190133700
    Abstract: Systems and methods for navigation and control of an implant positioning device are discussed. For example, a method can include operations for accessing an implant plan, establishing a 3-D coordinate system, receiving tracking information, generating control signals, and sending the control signals to the implant positioning device. The implant plan can include location and orientation data describing an ideal implant location and orientation in reference to an implant host. The 3-D coordinate system can provide spatial orientation for the implant positioning device and the implant host. The tracking information can identify current location and orientation data within the 3-D coordinate system for the implant positioning device and implant host during a procedure. The control signals can control operation of the implant positioning device to assist a surgeon in positioning the implant according to the implant plan.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Benjamin Oliver MCCANDLESS
  • Patent number: 10251706
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. A system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system can include an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 9, 2019
    Assignee: BLUE BELT TECHNOLOGIES, INC.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20190008525
    Abstract: A system, method, and device for drilling holes (420, 422) in a target bone (414) are described. For example, the system includes a cutting tool (330), a navigation system (310) configured to track a position of the cutting tool, and a computer-assisted surgical (CAS) system (340) operably connected to the cutting tool and the navigation system. The CAS system can be configured to determine an implant component (100) to be implanted on the target bone (414), determine a cutting block position for preparing the target bone to receive the implant component, determine a plurality of pin locations (420, 422) for securing the cutting block (416) based upon the determined cutting block position, and selectively provide instructions to the cutting tool to cut a hole when the cutting tool is in a position adjacent to at least one of the determined plurality of pin locations.
    Type: Application
    Filed: November 30, 2017
    Publication date: January 10, 2019
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Publication number: 20190005186
    Abstract: Systems and methods for generating a surgical plan for altering an abnormal bone using a generic normal bone model are discussed. For example, a system for planning a surgery on an abnormal bone can include a model receiver module configured to receive a generic normal bone model. The generic normal bone model, such as a parametric model derived from statistical shape data, can include a data set representing a normal bone having an anatomical origin comparable to the abnormal bone. An input interface can be configured to receive an abnormal bone representation including a data set representing the abnormal bone. A surgical planning module can include a registration module configured to register the generic normal bone model to the abnormal bone representation by creating a registered generic model. A surgical plan formation module can be configured to identify one or more abnormal regions of the abnormal bone using the registered generic model.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: Constantinos NIKOU, Branislav JARAMAZ
  • Publication number: 20180373416
    Abstract: Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 27, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ
  • Publication number: 20180344414
    Abstract: Systems and methods for navigation and control of an implant positioning device are discussed. For example, a method can include operations for accessing an implant plan, establishing a 3-D coordinate system, receiving tracking information, generating control signals, and sending the control signals to the implant positioning device. The implant plan can include location and orientation data describing an ideal implant location and orientation in reference to an implant host. The 3-D coordinate system can provide spatial orientation for the implant positioning device and the implant host. The tracking information can identify current location and orientation data within the 3-D coordinate system for the implant positioning device and implant host during a procedure. The control signals can control operation of the implant positioning device to assist a surgeon in positioning the implant according to the implant plan.
    Type: Application
    Filed: July 24, 2018
    Publication date: December 6, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Benjamin Oliver MCCANDLESS
  • Publication number: 20180341390
    Abstract: Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
    Type: Application
    Filed: August 7, 2018
    Publication date: November 29, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ
  • Patent number: 10130428
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: November 20, 2018
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jaramaz, Barry M. Fell
  • Publication number: 20180329613
    Abstract: Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ
  • Publication number: 20180303564
    Abstract: An implant positioning device and a method of using the device are described. The positioning device includes an end effector configured to contact an implant component during a surgical procedure, the end effector connected to an actuator for imparting an impact force to the implant component during the surgical procedure, a motor mechanically connected to the actuator and configured to move the actuator to produce one or more impacts on the end effector, thereby imparting the impact force to the implant component, and a control circuit coupled to the motor. The control circuit is configured to generate at least one motor control signal, transfer the at least one motor control signal to the motor, and, as a result of the at least one motor control signal, cause the motor to move the actuator to produce one or more impacts on the end effector.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Benjamin Oliver MCCANDLESS
  • Publication number: 20180303554
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: June 27, 2018
    Publication date: October 25, 2018
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Publication number: 20180303555
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Application
    Filed: June 28, 2018
    Publication date: October 25, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Barry M. FELL
  • Patent number: 10105152
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: October 23, 2018
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jaramaz, Barry Fell
  • Publication number: 20180296276
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Publication number: 20180296275
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Publication number: 20180296274
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Patent number: 10098649
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: October 16, 2018
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jaramaz