Patents by Inventor Constantinos Nikou

Constantinos Nikou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180185107
    Abstract: An implant positioning device and a method of using the device are described. The positioning device includes an end effector configured to contact an implant component during a surgical procedure, the end effector connected to an actuator for imparting an impact force to the implant component during the surgical procedure, a motor mechanically connected to the actuator and configured to move the actuator to produce one or more impacts on the end effector, thereby imparting the impact force to the implant component, and a control circuit coupled to the motor. The control circuit is configured to generate at least one motor control signal, transfer the at least one motor control signal to the motor, and, as a result of the at least one motor control signal, cause the motor to move the actuator to produce one or more impacts on the end effector.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 5, 2018
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Benjamin Oliver MCCANDLESS
  • Publication number: 20180071028
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 15, 2018
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Branislav JARAMAZ, Constantinos NIKOU
  • Patent number: 9855106
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 2, 2018
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20170151019
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 1, 2017
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jaramaz, Barry M. Fell
  • Publication number: 20170014189
    Abstract: Systems and methods for computer-aided alignment and positioning of a prosthesis component onto a target host bone, such as in joint resurfacing arthroplasty, are discussed. A system for can include a processor unit and a user interface unit. The processor unit can receive a target bone model including a first data set representing a target bone surface, and a prosthesis model including a second data set representing a prosthesis surface. The prosthesis, when positioned against the target bone, is configured to at least partially replace the articulation surface. The processor unit can generate an articulation interface representation that indicates spatial misalignment between one or more portions of the prosthesis surface and one or more portions of the target bone surface when the prosthesis model is positioned against the target bone model.
    Type: Application
    Filed: March 4, 2015
    Publication date: January 19, 2017
    Applicant: BLUE BELT TECHNOLOGIES, INC.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20170014190
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. A system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system can include an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: February 27, 2015
    Publication date: January 19, 2017
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20170007274
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Application
    Filed: August 26, 2016
    Publication date: January 12, 2017
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jamaraz, Barry Fell
  • Publication number: 20160361075
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Application
    Filed: February 27, 2015
    Publication date: December 15, 2016
    Applicant: BLUE BELT TECHNOLOGIES, INC.
    Inventors: Constantinos NIKOU, Branislav JARAMAZ, Barry FELL
  • Publication number: 20160361072
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Patent number: 9415189
    Abstract: The apparatus provides for injecting therapeutic agents at precise locations into the bodily tissue. The apparatus comprises an end effector that is guided to a precise location by motion controllers on a handle. At a precise location, the end effector attaches via a vacuum to the cardiac tissue. A flexible needle is advanced through a deflecting tunnel in the end effector to a desired depth. A therapeutic agent is then introduced via the flexible needle into the cardiac tissue. All these manipulations can be controlled by one hand and can be viewed via imaging methods.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 16, 2016
    Assignee: Blue Belt Technologies Inc.
    Inventors: Constantinos Nikou, Adam Hahn, Adam Simone
  • Publication number: 20150278623
    Abstract: Embodiments of a system and method for preventing wrong-level spinal surgery are generally described herein. A system can include a receiver to: receive an indication of a landmark on a patient corresponding to a single landmark point on an image of the patient, and receive an initial physical position of a tracked device in relation to the landmark on the patient. The system can include a processor to register the initial physical position of the tracked device to the landmark point on the image based on receiving the indication of the landmark on the patient, and a user interface to: display a first virtual position indicator at the landmark point on the image, and display, in response to the receiver receiving information indicating movement of the tracked device, a second virtual position indicator to indicate a linear movement of the second virtual position indicator in reference to the image.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 1, 2015
    Inventor: Constantinos Nikou
  • Publication number: 20150250553
    Abstract: Systems and methods for computer-aided alignment and positioning of a prosthesis component onto a target host bone, such as in joint resurfacing arthroplasty, are discussed. A system for can include a processor unit and a user interface unit. The processor unit can receive a target bone model including a first data set representing a target bone surface, and a prosthesis model including a second data set representing a prosthesis surface. The prosthesis, when positioned against the target bone, is configured to at least partially replace the articulation surface. The processor unit can generate an articulation interface representation that indicates spatial misalignment between one or more portions of the prosthesis surface and one or more portions of the target bone surface when the prosthesis model is positioned against the target bone model.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 10, 2015
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20150245879
    Abstract: Examples of an orthopedic surgical device for use in operating on a target bone and methods for operating a system for use in orthopedic surgery on a bone are generally described herein. An orthopedic surgical device can include an primary positioning block, and a secondary positioning component removably coupled to the primary positioning block. The secondary positioning component can be configured to: engage a prepared engagement feature machined into the target bone, and guide the primary positioning block to a predetermined position on a target bone. The orthopedic surgical device can include a first cutting block configured to: removably couple to the primary positioning block, and guide a cutting tool to cut the target bone.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 3, 2015
    Inventors: Constantinos Nikou, Barry Fell, Branislav Jaramaz
  • Publication number: 20150245878
    Abstract: Systems and methods for positioning a cut guide using navigation-based techniques are discussed. For example, a system for use in an orthopedic surgery on a target bone can comprise a cut guide adjustably positionable onto the target bone via two or more coupling receptacles created on the target bone. The coupling receptacles can include one or more guide members and a plurality of landing members. The system also includes an input interface that can receive a target bone representation, and a model receiver module that can receive a generic post-coupling bone model. The target bone representation can include a data set representing two or more landing sites of the target bone, and the generic post-coupling bone model can include a data set representing a bone having two or more coupling receptacles each sized, shaped or otherwise configured to receive and secure the respective coupling feature of the landing members.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 3, 2015
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Patent number: 8961536
    Abstract: A handpiece arrangement for a tool having a retaining member configured to receive a portion of the tool in a secure position, a guard configured to cover a portion of the tool, at least one mounting member configured to receive a portion of a tracking system and an actuator mounted to the handpiece. The actuator may be configured to control the exposure of the tool. A navigated surgery kit is also provided including a tracking system, a tool in communication with the tracking system, a platform in communication with the tracking system and the tool. The platform may have a processor, a computer readable storage medium having computer readable program code configured to selectively control shaping of an object with the tool via at least one hidden object associated with a predetermined navigated surgical operation.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Marius Giurgi, Jim Moody, Benjamin McCandless, Craig Markovitz, Adam Hahn, Branislav Jaramaz
  • Publication number: 20140278322
    Abstract: Systems and methods for generating a surgical plan for altering an abnormal bone using a generic normal bone model are discussed. For example, a system for planning a surgery on an abnormal bone can include a model receiver module configured to receive a generic normal bone model. The generic normal bone model, such as a parametric model derived from statistical shape data, can include a data set representing a normal bone having an anatomical origin comparable to the abnormal bone. An input interface can be configured to receive an abnormal bone representation including a data set representing the abnormal bone. A surgical planning module can include a registration module configured to register the generic normal bone model to the abnormal bone representation by creating a registered generic model. A surgical plan formation module can be configured to identify one or more abnormal regions of the abnormal bone using the registered generic model.
    Type: Application
    Filed: January 27, 2014
    Publication date: September 18, 2014
    Inventors: Branislav Jaramaz, Constantinos Nikou
  • Publication number: 20140282194
    Abstract: Systems and methods for virtual implant placement to implement joint gap planning are discussed. For example, a method can include operations for receiving a first implant parameter set based on a surgical plan that was generated while moving the joint through a range of motion. The method can include generating a first set of candidate implant parameter sets that are the result of an incremental change, relative to the first implant parameter set, to at least one parameter of the first parameter set. The method can include calculating a result for at least one candidate implant parameter set and providing a graphical representation of the result according to at least one candidate implant parameter set. The result can be color-coded to correlate to a candidate implant parameter set. The display can include color-coded user interface controls to allow a user to execute incremental changes corresponding to candidate implant parameter sets.
    Type: Application
    Filed: February 24, 2014
    Publication date: September 18, 2014
    Applicant: BLUE BELT TECHNOLOGIES, INC.
    Inventors: Constantinos Nikou, Branislav Jaramaz
  • Publication number: 20140135791
    Abstract: Systems and methods for navigation and control of an implant positioning device are discussed. For example, a method can include operations for accessing an implant plan, establishing a 3-D coordinate system, receiving tracking information, generating control signals, and sending the control signals to the implant positioning device. The implant plan can include location and orientation data describing an ideal implant location and orientation in reference to an implant host. The 3-D coordinate system can provide spatial orientation for the implant positioning device and the implant host. The tracking information can identify current location and orientation data within the 3-D coordinate system for the implant positioning device and implant host during a procedure. The control signals can control operation of the implant positioning device to assist a surgeon in positioning the implant according to the implant plan.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 15, 2014
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Branislav Jaramaz, Benjamin Oliver McCandless
  • Publication number: 20120123418
    Abstract: Described herein are stabilizers for surgical tools. One aspect provides a surgical tool stabilizer, comprising: a support configured to engage at least a portion of a surgical tool and configured to receive at least a portion of a tracking system; and a retractable stabilizer configured to surround at least a portion of an end effector of said surgical tool. Other embodiments are described.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 17, 2012
    Applicant: Blue Belt Technologies, LLC
    Inventors: Marius Giurgi, Adam Hahn, Benjamin McCandless, Constantinos Nikou
  • Publication number: 20120016339
    Abstract: The apparatus provides for injecting therapeutic agents at precise locations into the bodily tissue. The apparatus comprises an end effector that is guided to a precise location by motion controllers on a handle. At a precise location, the end effector attaches via a vacuum to the cardiac tissue. A flexible needle is advanced through a deflecting tunnel in the end effector to a desired depth. A therapeutic agent is then introduced via the flexible needle into the cardiac tissue. All these manipulations can be controlled by one hand and can be viewed via imaging methods.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Applicant: Blue Belt Technologies, Inc.
    Inventors: Constantinos Nikou, Adam Hahn, Adam Simone