Patents by Inventor Cory E. Weber

Cory E. Weber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10840366
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 17, 2020
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Cory E. Weber, Patrick H. Keys, Seiyon Kim, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20200279910
    Abstract: Material systems for source region, drain region, and a semiconductor body of transistor devices in which the semiconductor body is electrically insulated from an underlying substrate are selected to reduce or eliminate a band to band tunneling (“BTBT”) effect between different energetic bands of the semiconductor body and one or both of the source region and the drain region. This can be accomplished by selecting a material for the semiconductor body with a band gap that is larger than a band gap for material(s) selected for the source region and/or drain region.
    Type: Application
    Filed: December 15, 2017
    Publication date: September 3, 2020
    Applicant: INTEL CORPORATION
    Inventors: Dipanjan Basu, Cory E. Weber, Justin R. Weber, Sean T. Ma, Harold W. Kennel, Seung Hoon Sung, Glenn A. Glass, Jack T. Kavalieros, Tahir Ghani
  • Publication number: 20200220024
    Abstract: A back-gated thin-film transistor (TFT) includes a gate electrode, a gate dielectric on the gate electrode, an active layer on the gate dielectric and having source and drain regions and a semiconductor region physically connecting the source and drain regions, a capping layer on the semiconductor region, and a charge trap layer on the capping layer. In an embodiment, a memory cell includes this back-gated TFT and a capacitor, the gate electrode being electrically connected to a wordline and the source region being electrically connected to a bitline, the capacitor having a first terminal electrically connected to the drain region, a second terminal, and a dielectric medium electrically separating the first and second terminals. In another embodiment, an embedded memory includes wordlines extending in a first direction, bitlines extending in a second direction crossing the first direction, and several such memory cells at crossing regions of the wordlines and bitlines.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 9, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Cory E. Weber, Sean T. Ma, Tahir Ghani, Shriram Shivaraman, Gilbert Dewey
  • Publication number: 20200176482
    Abstract: Embodiments of the present invention are directed to formation of fins with different active channel heights in a tri-gate or a Fin-FET device. In an embodiment, at least two fins are formed on a front side of the substrate. A gate structure extends over a top surface and a pair of sidewalls of at least a portion of the fins. In an embodiment, the substrate is thinned to expose the bottom surface of the fins. Next, backside etching may be performed on each fin to form active channel regions. The fins may be recessed to different depths, forming active channel regions with differing heights.
    Type: Application
    Filed: February 10, 2020
    Publication date: June 4, 2020
    Inventors: Aaron D. LILAK, Patrick MORROW, Stephen M. CEA, Rishabh MEHANDRU, Cory E. WEBER
  • Publication number: 20200144374
    Abstract: An electronic device comprises a first layer on a buffer layer on a substrate. A source/drain region is deposited on the buffer layer. The first layer comprises a first semiconductor. The source/drain region comprises a second semiconductor. The second semiconductor has a bandgap that is smaller than a bandgap of the first semiconductor. A gate electrode is deposited on the first layer.
    Type: Application
    Filed: June 30, 2017
    Publication date: May 7, 2020
    Inventors: Sean T. MA, Cory E. WEBER, Dipanjan BASU, Harold W. KENNEL, Willy RACHMADY, Gilbert DEWEY, Jack T. KAVALIEROS, Anand S. MURTHY, Tahir GHANI, Matthew V. METZ, Cheng-ying HUANG
  • Patent number: 10600810
    Abstract: Embodiments of the present invention are directed to formation of fins with different active channel heights in a tri-gate or a Fin-FET device. In an embodiment, at least two fins are formed on a front side of the substrate. A gate structure extends over a top surface and a pair of sidewalls of at least a portion of the fins. In an embodiment, the substrate is thinned to expose the bottom surface of the fins. Next, backside etching may be performed on each fin to form active channel regions. The fins may be recessed to different depths, forming active channel regions with differing heights.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: March 24, 2020
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Patrick Morrow, Stephen M. Cea, Rishabh Mehandru, Cory E. Weber
  • Publication number: 20200035818
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Stephen M. CEA, Cory E. WEBER, Patrick H. KEYS, Seiyon KIM, Michael G. HAVERTY, Sadasivan SHANKAR
  • Publication number: 20200013861
    Abstract: Substrates, assemblies, and techniques for a backend transistor, where the backend transistor includes a gate, a semiconductor oxide, a source metal and a drain metal, and an insulator between the source metal and the gate and between the drain metal and the gate. The insulator can allow for tunneling between the source metal and/or the drain metal and the semiconductor oxide.
    Type: Application
    Filed: March 31, 2017
    Publication date: January 9, 2020
    Applicant: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert W. Dewey, Shriram Shivaraman, Tahir Ghani, Jack T. Kavalieros, Cory E. Weber
  • Patent number: 10497781
    Abstract: Methods for doping a sub-fin region of a semiconductor structure include providing a semiconductor structure that comprises a substrate and a plurality of fins formed on the substrate, the plurality of fins having sub-fin regions adjacent to the substrate; removing the substrate to expose a portion of the sub-fin regions of the plurality of fins, and implanting a dopant material into the exposed portion of the sub-fin region. The method may also include performing an annealing process after the implantation such that the dopant becomes electrically active. The method may also include patterning the backside of the semiconductor structure. Devices constructed using the disclosed methods are also provided, and other embodiments are discussed.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: December 3, 2019
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Stephen M. Cea, Rishabh Mehandru, Cory E. Weber
  • Patent number: 10483385
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: November 19, 2019
    Assignee: Intel Corporation
    Inventors: Stephen M. Cea, Cory E. Weber, Patrick H. Keys, Seiyon Kim, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20190341384
    Abstract: An integrated circuit structure is provided which comprises: a stack of source regions of a stack of transistors and a stack of drain regions of the stack of transistors; and a gate stack that forms gate regions for the stack of transistors, wherein the gate stack comprises traces of a first polymer of a block copolymer, the block copolymer comprising the first polymer and a second polymer.
    Type: Application
    Filed: March 15, 2017
    Publication date: November 7, 2019
    Applicant: Intel Corporation
    Inventors: Aaron D. Lilak, Patrick Theofanis, Cory E. Weber, Stephen M. Cea, Rishabh Mehandru
  • Patent number: 10411090
    Abstract: Hybrid trigate and nanowire CMOS device architecture, and methods of fabricating hybrid trigate and nanowire CMOS device architecture, are described. For example, a semiconductor structure includes a semiconductor device of a first conductivity type having a plurality of vertically stacked nanowires disposed above a substrate. The semiconductor structure also includes a semiconductor device of a second conductivity type opposite the first conductivity type, the second semiconductor device having a semiconductor fin disposed above the substrate.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: September 10, 2019
    Assignee: Intel Corporation
    Inventors: Cory E. Weber, Rishabh Mehandru, Stephen M. Cea
  • Publication number: 20190267448
    Abstract: Methods and structures formed thereby are described relating to the doping non-planar fin structures. An embodiment of a structure includes a substrate, wherein the substrate comprises silicon, a fin on the substrate comprising a first portion and a second portion; and a dopant species, wherein the first portion comprises a first dopant species concentration, and the second portion comprises a second dopant species concentration, wherein the first dopant species concentration is substantially less than the second dopant species concentration.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Applicant: Intel Corporation
    Inventors: Cory E. Weber, Aaron D. Lilak, Szuya S. Liao, Aaron A. Budrevich
  • Publication number: 20190252525
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Rishabh MEHANDRU, Patrick MORROW, Ranjith KUMAR, Cory E. WEBER, Seiyon KIM, Stephen M. CEA, Tahir GHANI
  • Publication number: 20190207015
    Abstract: Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance.
    Type: Application
    Filed: September 27, 2016
    Publication date: July 4, 2019
    Applicant: INTEL CORPORATION
    Inventors: RISHABH MEHANDRU, CORY E. WEBER, ANAND S. MURTHY, KARTHIK JAMBUNATHAN, GLENN A. GLASS, JIONG ZHANG, RITESH JHAVERI, SZUYA S. LIAO
  • Patent number: 10304946
    Abstract: Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: May 28, 2019
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Patrick Morrow, Ranjith Kumar, Cory E. Weber, Seiyon Kim, Stephen M. Cea, Tahir Ghani
  • Publication number: 20190027503
    Abstract: Embodiments of the present invention are directed to formation of fins with different active channel heights in a tri-gate or a Fin-FET device. In an embodiment, at least two fins are formed on a front side of the substrate. A gate structure extends over a top surface and a pair of sidewalls of at least a portion of the fins. In an embodiment, the substrate is thinned to expose the bottom surface of the fins. Next, backside etching may be performed on each fin to form active channel regions. The fins may be recessed to different depths, forming active channel regions with differing heights.
    Type: Application
    Filed: September 25, 2015
    Publication date: January 24, 2019
    Inventors: Aaron D. LILAK, Patrick MORROW, Stephen M. CEA, Rishabh MEHANDRU, Cory E. WEBER
  • Patent number: 10084087
    Abstract: A device is provided. The device includes a transistor formed on a semiconductor substrate, the transistor having a conduction channel. The device includes at least one edge dislocation formed adjacent to the conduction channel on the semiconductor substrate. The device also includes at least one free surface introduced above the conduction channel and the at least one edge dislocation.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: September 25, 2018
    Assignee: Intel Corporation
    Inventors: Cory E. Weber, Mark Y. Liu, Anand S. Murthy, Hemant V. Deshpande, Daniel B. Aubertine
  • Publication number: 20180254320
    Abstract: Methods and structures formed thereby are described relating to the doping non-planar fin structures. An embodiment of a structure includes a substrate, wherein the substrate comprises silicon, a fin on the substrate comprising a first portion and a second portion; and a dopant species, wherein the first portion comprises a first dopant species concentration, and the second portion comprises a second dopant species concentration, wherein the first dopant species concentration is substantially less than the second dopant species concentration.
    Type: Application
    Filed: September 25, 2015
    Publication date: September 6, 2018
    Applicant: Intel Corporation
    Inventors: Cory E. Weber, Aaron D. Lilak, Szuya S. Liao, Aaron A. Budrevich
  • Publication number: 20180248005
    Abstract: Methods for doping a sub-fin region of a semiconductor structure include providing a semiconductor structure that comprises a substrate and a plurality of fins formed on the substrate, the plurality of fins having sub-fin regions adjacent to the substrate; removing the substrate to expose a portion of the sub-fin regions of the plurality of fins, and implanting a dopant material into the exposed portion of the sub-fin region. The method may also include performing an annealing process after the implantation such that the dopant becomes electrically active. The method may also include patterning the backside of the semiconductor structure. Devices constructed using the disclosed methods are also provided, and other embodiments are discussed.
    Type: Application
    Filed: December 23, 2015
    Publication date: August 30, 2018
    Inventors: Aaron D. LILAK, Stephen M. CEA, Rishabh MEHANDRU, Cory E. WEBER