Patents by Inventor Cory Wajda

Cory Wajda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230274932
    Abstract: A method for processing a substrate includes treating the substrate with a small molecular inhibitor (SMI), the substrate including a recess formed in a dielectric layer and a first metal layer in the recess, the SMI covering a surface of the first metal layer. The method further includes, after treating the substrate with the SMI, treating the substrate with a large molecular inhibitor (LMI), the LMI covering sidewalls of the dielectric layer in the recess. The method further includes heating the substrate to remove the SMI from the first metal layer and to expose the first metal layer in the recess, where the LMI remains on the sidewalls after removing the SMI from the first metal layer. The method further includes depositing a second metal over the first metal layer in the recess, where the LMI covering the sidewalls prevents deposition of the second metal on the dielectric layer.
    Type: Application
    Filed: January 18, 2023
    Publication date: August 31, 2023
    Inventors: Kai-Hung Yu, Robert D. Clark, Ryota Yonezawa, Hiroaki Niimi, Hidenao Suzuki, Kandabara Tapily, Takahiro Miyahara, Cory Wajda
  • Patent number: 11700778
    Abstract: A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: July 11, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Steven Consiglio, Cory Wajda, Kandabara Tapily, Takaaki Tsunomura, Takashi Ando, Paul C. Jamison, Eduard A. Cartier, Vijay Narayanan, Marinus J. P. Hopstaken
  • Patent number: 11621190
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 4, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Publication number: 20220301930
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, forming a nucleation enhancement layer on a sidewall of the first layer in the recessed feature and depositing a metal layer in the recessed feature by vapor phase deposition, where the metal layer is deposited on the second layer and on the nucleation enhancement layer. An initial metal layer may be selectively formed on the second layer in the recessed feature before forming the nucleation enhancement layer.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 22, 2022
    Inventors: Kai-Hung Yu, Shihsheng Chang, Ying Trickett, Eric Chih-Fang Liu, Yun Han, Henan Zhang, Cory Wajda, Robert D. Clark, Gerrit J. Leusink, Gyanaranjan Pattanaik, Hiroaki Niimi
  • Publication number: 20220139776
    Abstract: A method for filling recessed features with a low-resistivity metal includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, and depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature. The method further includes removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature, where the removing includes exposing the patterned substrate to an etching gas containing ozone.
    Type: Application
    Filed: October 21, 2021
    Publication date: May 5, 2022
    Inventors: Kai-Hung Yu, David L. O'Meara, Hisashi Higuchi, Hirokazu Aizawa, Omid Zandi, Cory Wajda, Gerrit J. Leusink
  • Publication number: 20210287936
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Publication number: 20210234096
    Abstract: A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 29, 2021
    Inventors: Steven Consiglio, Cory Wajda, Kandabara Tapily, Takaaki Tsunomura, Takashi Ando, Paul C. Jamison, Eduard A. Cartier, Vijay Narayanan, Marinus J.P. Hopstaken
  • Patent number: 11024535
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: June 1, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Patent number: 10991881
    Abstract: A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 27, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Steven Consiglio, Cory Wajda, Kandabara Tapily, Takaaki Tsunomura, Takashi Ando, Paul C. Jamison, Eduard A. Cartier, Vijay Narayanan, Marinus J. P. Hopstaken
  • Patent number: 10950460
    Abstract: A process is provided in which etched layer(s) are protected from residues or defects caused by or resulting from exposure to atmospheric conditions. Protection is provided through the formation of an encapsulation layer post etch. In one embodiment, the encapsulation is provided by a thin layer formed in an atomic layer deposition (ALD) process. The thin layer prevents the etched layer(s) from exposure to air. This encapsulation process may take place after the etch process thus allowing for substrates to be subsequently exposed to atmospheric conditions with little or no queue time constraints being needed for staging subsequent wet clean processing steps. In one embodiment, the encapsulation process may be performed with no vacuum break between the etch process and the encapsulation process. In one embodiment, the encapsulation film is compatible with subsequent wet process steps and can be removed during this wet process steps without adverse effects.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: March 16, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Angelique Raley, Andrew Metz, Cory Wajda, Junling Sun
  • Publication number: 20200381624
    Abstract: A method of controlling the forming voltage of a dielectric film in a resistive random access memory (ReRAM) device. The method includes depositing a dielectric film contains intrinsic defects on a substrate, forming a plasma-excited treatment gas containing H2 gas, and exposing the dielectric film to the plasma-excited treatment gas to create additional defects in the dielectric film without substantially changing a physical thickness of the dielectric film, where the additional defects lower the forming voltage needed for generating an electrically conducting filament across the dielectric film. The dielectric film can include a metal oxide film and the plasma-excited treatment gas may be formed using a microwave plasma source.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 3, 2020
    Inventors: Steven Consiglio, Cory Wajda, Kandabara Tapily, Takaaki Tsunomura, Takashi Ando, Paul C. Jamison, Eduard A. Cartier, Vijay Narayanan, Marinus J.P. Hopstaken
  • Patent number: 10700009
    Abstract: A method is provided for void-free Ru metal filling of features in a substrate. The method includes providing a substrate containing features, depositing a Ru metal layer in the features, removing the Ru metal layer from a field area around an opening of the features, and depositing additional Ru metal in the features, where the additional Ru metal is deposited in the features at a higher rate than on the field area. According to one embodiment, the additional Ru metal is deposited until the features are fully filled with Ru metal.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: June 30, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Nicholas Joy, Eric Chih Fang Liu, David L. O'Meara, David Rosenthal, Masanobu Igeta, Cory Wajda, Gerrit J. Leusink
  • Publication number: 20200118871
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Publication number: 20200051832
    Abstract: A process is provided in which etched layer(s) are protected from residues or defects caused by or resulting from exposure to atmospheric conditions. Protection is provided through the formation of an encapsulation layer post etch. In one embodiment, the encapsulation is provided by a thin layer formed in an atomic layer deposition (ALD) process. The thin layer prevents the etched layer(s) from exposure to air. This encapsulation process may take place after the etch process thus allowing for substrates to be subsequently exposed to atmospheric conditions with little or no queue time constraints being needed for staging subsequent wet clean processing steps. In one embodiment, the encapsulation process may be performed with no vacuum break between the etch process and the encapsulation process. In one embodiment, the encapsulation film is compatible with subsequent wet process steps and can be removed during this wet process steps without adverse effects.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 13, 2020
    Inventors: Angelique Raley, Andrew Metz, Cory Wajda, Junling Sun
  • Publication number: 20190103363
    Abstract: A method is provided for void-free Ru metal filling of features in a substrate. The method includes providing a substrate containing features, depositing a Ru metal layer in the features, removing the Ru metal layer from a field area around an opening of the features, and depositing additional Ru metal in the features, where the additional Ru metal is deposited in the features at a higher rate than on the field area. According to one embodiment, the additional Ru metal is deposited until the features are fully filled with Ru metal.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 4, 2019
    Inventors: Kai-Hung Yu, Nicholas Joy, Eric Chih Fang Liu, David L. O'Meara, David Rosenthal, Masanobu Igeta, Cory Wajda, Gerrit J. Leusink
  • Patent number: 10157784
    Abstract: Methods for integration of conformal barrier layers and Ru metal liners with Cu metallization in semiconductor manufacturing are described in several embodiments. According to one embodiment, the method includes providing a substrate containing a recessed feature, depositing a barrier layer in the recessed feature, depositing a Ru metal liner on the barrier layer, and exposing the substrate to an oxidation source gas to oxidize the barrier layer through the Ru metal liner. The method further includes filling the recessed feature with CuMn metal using an ionized physical vapor deposition (IPVD) process, heat-treating the substrate to diffuse Mn from the CuMn metal to the oxidized barrier layer, and reacting the diffused Mn with the oxidized barrier layer to form a Mn-containing diffusion barrier.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: December 18, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Manabu Oie, Kaoru Maekawa, Cory Wajda, Gerrit J. Leusink, Yuuki Kikuchi, Hiroaki Kawasaki, Hiroyuki Nagai
  • Patent number: 10068764
    Abstract: Embodiments of the invention provide methods for selective film deposition using a surface pretreatment. According to one embodiment, the method includes providing a substrate containing a dielectric layer and a metal layer, exposing the substrate to a reactant gas containing a molecule that forms self-assembled monolayers (SAMs) on the substrate, and thereafter, selectively depositing a metal oxide film on a surface of the dielectric layer relative to a surface of the metal layer by exposing the substrate to a deposition gas.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: September 4, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kandabara N. Tapily, Gerrit J. Leusink, Cory Wajda, Hoyoung Kang
  • Patent number: 10056328
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 21, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 10008564
    Abstract: Embodiments of the invention describe a method of corner rounding and trimming of nanowires used in semiconductor devices. According to one embodiment, the method includes providing in a process chamber a plurality of nanowires separated from each other by a void, where the plurality of nanowires have a height and at least substantially right angle corners, forming an oxidized surface layer on the plurality of nanowires using an oxidizing microwave plasma, removing the oxidized surface layer to trim the height and round the corners of the plurality of nanowires, and repeating the forming and removing at least once until the plurality of nanowires have a desired trimmed height and rounded corners.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 26, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kandabara N. Tapily, Ying Trickett, Chihiro Tamura, Cory Wajda, Gerrit J. Leusink, Kaoru Maekawa
  • Publication number: 20180076027
    Abstract: Embodiments of the invention provide methods for selective film deposition using a surface pretreatment. According to one embodiment, the method includes providing a substrate containing a dielectric layer and a metal layer, exposing the substrate to a reactant gas containing a molecule that forms self-assembled monolayers (SAMs) on the substrate, and thereafter, selectively depositing a metal oxide film on a surface of the dielectric layer relative to a surface of the metal layer by exposing the substrate to a deposition gas.
    Type: Application
    Filed: September 12, 2017
    Publication date: March 15, 2018
    Inventors: Kandabara N. Tapily, Gerrit J. Leusink, Cory Wajda, Hoyoung Kang