Patents by Inventor Craig F Gorin

Craig F Gorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240051187
    Abstract: A process for separating and recovering at least one polymer component from a melt of a multiple number of polymer components including the steps of: (A) shearing a multi-polymer component melt in the presence of a pressurized aqueous solution; wherein the multi-polymer component melt comprises a blend of at least a first polymer component and at least a second polymer component; wherein the multi-polymer component melt has at least two melting temperatures, at least two glass transition temperatures or combinations thereof; wherein the pressurized aqueous solution comprises an aqueous liquid mixture of: (i) water, and (ii) at least one dispersing agent; wherein the shearing of the multi-polymer component melt in contact with the pressurized aqueous solution forms a dispersion, particles, or strands of the at least one first polymer component having an enriched first polymer component concentration; and (B) after the shearing of step (A), isolating the at least first polymer component from the other polymer c
    Type: Application
    Filed: June 17, 2022
    Publication date: February 15, 2024
    Inventors: Craig F. Gorin, Jin Wang, Scott T. Matteucci, Jill M. Martin, En Wang
  • Patent number: 11746195
    Abstract: The present disclosure provides a process including providing a polyolefin aqueous dispersion having (50) to (90) wt % solids content of dispersion, the polyolefin aqueous dispersion containing solid particles containing a polyolefin including an ethylene-based polymer having a melting temperature from greater than (115)° C. to (140)° C., polyolefin wax, acrylic dispersant; and an aqueous phase including excess acrylic dispersant; adding diluting water to form a diluted polyolefin aqueous dispersion having (5) to less than (50) wt % solids content; collecting the solid particles; washing the solid particles with a washing agent to remove the excess acrylic dispersant; and removing the washing agent to form a powder having a mean volume average particle size from (10) to (300) ?m, a sphericity from (0.92) to (1.0), a particle size distribution from (1) to less than (2), a particle density from (98)% to (100)%, and a flow rate in a large funnel from (1) to (5) seconds.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: September 5, 2023
    Inventors: Craig F. Gorin, Sanjib Biswas, Yi Fan, Thomas L. Tomczak, Daniel L. Dermody, Harpreet Singh
  • Publication number: 20230272180
    Abstract: A method for reducing an amount of a contaminant in a thermoplastic polymer comprising shearing a combination comprising a contaminated thermoplastic polymer in melt form, water, and a dispersing agent where the shearing causes a portion of the contaminant to be removed from the contaminated thermoplastic polymer (e.g. moved into an aqueous phase with the water or into another separate phase from the water and the polymer), and after shearing, separating the thermoplastic from the aqueous phase to recover thermoplastic polymer.
    Type: Application
    Filed: July 6, 2021
    Publication date: August 31, 2023
    Inventors: Craig F. GORIN, David L. MALOTKY, Daniel L. DERMODY, Christopher J. TUCKER, Jin WANG, Anurima SINGH, Jill M. MARTIN, Thomas TOMCZAK, Hari KATEPALLI
  • Patent number: 11718934
    Abstract: A method of preparing a resin infused random fiber mat including the step of forming a liquid dispersion mat of polymeric resin and fiber on a porous substrate.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 8, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Manesh Nadupparambil Sekharan, Jason A. Reese, Amit K. Chaudhary, Daniel L. Dermody, Kevin J. Bouck, Rebekah K. Feist, Thomas J. Parsons, David H. Bank
  • Patent number: 11643569
    Abstract: A method for providing a substrate coated with a cured damping coating including: applying a curable liquid damping composition to a substrate, wherein said curable liquid damping composition includes an admixture of certain Michael acceptor(s), certain Michael donor(s), a base catalyst; a rheology modifier; and a solid filler; wherein the filler is a different material than the rheology modifier; wherein the curable damping composition has a PVC of from 20% to 70%; and drying/curing the applied curable damping composition at a temperature of from 0° C. to 250° C. is provided. Also provided is a substrate coated with the cured damping coating.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: May 9, 2023
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Ray E. Drumright, Zhenwen Fu, Justin Gimbal, Craig F. Gorin, Xin Jin
  • Publication number: 20220306890
    Abstract: A method comprising, (i) providing a thermoplastic material comprising 5-75 wt % of a post-consumer recycled polyolefin composition and 25-95 wt % of an olefin block copolymer composition based on total weight of the thermoplastic material, wherein the post-consumer recycled polyolefin composition comprises at least 50 wt %, of a polyolefin and at least 0.1 wt % of a contaminant; (ii) heating and dispensing said thermoplastic material through a nozzle to form an extrudate deposited on a base, (iii) moving the base, nozzle or combination thereof while dispensing the thermoplastic material so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base, and (iv) repeating steps (ii) and (iii) to form a subsequent layer of the material adhered on the initial layer, and (v) optionally repeating step steps (ii) and (iii) to form additional subsequent layers.
    Type: Application
    Filed: October 7, 2020
    Publication date: September 29, 2022
    Inventors: Craig F. GORIN, Jun LI, Piyush THAKRE, Yongchao ZENG
  • Patent number: 11426924
    Abstract: An additive manufactured article is comprised of at least two adhered layers of extrudates (120) comprised of a thermoset material having therein a phase change material, wherein the phase change material undergoes a phase change at a temperature less than where the thermoset material decomposes. The article may be made by dispensing a mixture comprised of an organic reactive material and phase change material forming extrudates that are 3D printed into an article having multiple layers of extrudates bound together and then allowing the organic reactive material to react forming a thermoset material having therein the phase change material to form the additive manufactured article. The shape of the article may be changed by heating to a temperature above the temperature where the phase change material undergoes a phase change while applying a force and then cooling below the phase change temperature.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: August 30, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Aleksander J. Pyzik, Sanjay C. Solanki, Sharon Allen, Daniel P. Sophiea, Niranjan Malvadkar, Daniel L. Dermody
  • Publication number: 20210299948
    Abstract: A method of fused filament fabrication (FFF) additive manufacturing comprises employing a thermoplastic blend comprised of high density polyethylene and a second thermoplastic polymer, wherein the second polymer is a low density polyethylene (LDPE), functionalized polyolefin or combination thereof and the amount of high density polyethylene to the amount of second thermoplastic polymer by weight is a ratio from 1.5/1 to 20/1. LDPE means a polyethylene that have been radically polymerized at high pressure. The method allows for the additive manufacturing article that retains the desirable mechanical properties of HDPE without experiencing the problems inherent in FFF printing of HDPE or use of solid fillers. In a particular embodiment, the additive manufactured article has a continuous phase and the second thermoplastic polymer is present as a discontinuous phase within the additive article manufactured article and the filament used to make the article.
    Type: Application
    Filed: July 12, 2019
    Publication date: September 30, 2021
    Inventors: Craig F. Gorin, Sanjib Biswas, Sharon Allen, Scott T. Matteucci, Daniel L. Dermody, Harpreet Singh, Aleksander J. Pyzik
  • Publication number: 20210252774
    Abstract: A method of fused filament fabrication (FFF) additive manufacturing comprises employing an olefin block copolymer. The method allows for the additive manufacturing article that retains the desirable mechanical properties of polyolefins such as polyethylene or polypropylene without experiencing the problems inherent in FFF printing of polyethylene or polypropylene particularly in the absence of solid fillers. In a particular embodiment, the additive manufactured article is comprised of the olefin block copolymer is comprised of block composite or crystalline block composite polymer or mixture thereof comprising the olefin block copolymer, wherein the olefin block copolymer is comprised of an isotactic propylene block and a polyethylene rich block.
    Type: Application
    Filed: October 4, 2019
    Publication date: August 19, 2021
    Inventors: Andy Jun Li, Craig F. Gorin, Brayden E. Glad, Yushan Hu, Elva L. Lugo, Ni Yan, Piyush Thakre, Bruce D. Hook, Nathan Wilmot
  • Publication number: 20210155823
    Abstract: A method for providing a substrate coated with a cured damping coating including: applying a curable liquid damping composition to a substrate, wherein said curable liquid damping composition includes an admixture of certain Michael acceptor(s), certain Michael donor(s), a base catalyst; a rheology modifier; and a solid filler; wherein the filler is a different material than the rheology modifier; wherein the curable damping composition has a PVC of from 20% to 70%; and drying/curing the applied curable damping composition at a temperature of from 0° C. to 250° C. is provided. Also provided is a substrate coated with the cured damping coating.
    Type: Application
    Filed: April 26, 2019
    Publication date: May 27, 2021
    Inventors: Ray E. Drumright, Zhenwen Fu, Justin Gimbal, Craig F. Gorin, Xin Jin
  • Patent number: 11000972
    Abstract: The present disclosure provides a process. The process includes (i) melt blending, in an extruder, (a) a polyolefin phase and (b) an aqueous phase in the presence of (c) at least one dispersant selected from an acrylic dispersant, a poloxamer dispersant, and combinations thereof; (ii) producing an interfacial tension from 0.1 dynes/cm to 25 dynes/cm; (iii) forming a polyolefin aqueous dispersion having from 25 wt % to 90 wt % solids content of dispersion; and (iv) removing the water from the polyolefin aqueous dispersion to form a powder. The powder has a mean volume average particle size from 10 ?m to 300 ?m, a sphericity from 0.92 to 1.0, a particle size distribution from 1 to less than 2, and a particle density from 98% to 100%.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: May 11, 2021
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Craig F. Gorin, Sanjib Biswas, Manesh Nadupparambil Sekharan, Thomas L. Tomczak, Robert S. Moglia, Daniel L. Dermody, Harpreet Singh, Bryan L. McCulloch
  • Publication number: 20210115202
    Abstract: A method of preparing a resin infused random fiber mat including the step of forming a liquid dispersion mat of polymeric resin and fiber on a porous substrate.
    Type: Application
    Filed: February 14, 2018
    Publication date: April 22, 2021
    Inventors: Craig F. Gorin, Manesh Nadupparambil Sekharan, Jason A. Reese, Amit K. Chaudhary, Daniel L. Dermody, Kevin J. Bouck, Rebekah K. Feist, Thomas J. Parsons, David H. Bank
  • Patent number: 10967562
    Abstract: An additive elastomeric manufactured part having improved surface finish is made by repeatedly extruding through a nozzle to build up layers of a material comprised of a prepolymer comprised of an isocyanate terminated prepolymer and a filler in an amount such that the material has a shear storage modulus G? of 100,000 to 300,000 Pa measured at an oscillation rate of 1 Hz and a relaxation time of 20 seconds to 360 seconds. It has been discovered that the particular material having these rheological properties is able to improve the surface finish of the additive manufactured part without slumping and is believed to be due to surface flow of material into valleys between the extrudates as they are being built up.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: April 6, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Janet M. Goss, Aleksander J. Pyzik, Sharon Allen, Sanjay C. Solanki, Daniel P. Sophiea
  • Patent number: 10913203
    Abstract: An additive elastomeric manufactured part is comprised of extrudates comprised of a reaction product of a multifunctional Michael donor and multifunctional Michael acceptor and a rheological modifier. The additive elastomeric manufactured part may have a high elongation and resistance to heat. Said part may be made by dispensing a mixture of the multifunctional Michael donor, multifunctional Michael acceptor, rheological modifier and a catalyst through a through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the mixture so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base. Subsequent layers are then formed on the initial layer by repeating the dispensing and movement on top of the initial layer and layers that follow.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: February 9, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Craig F. Gorin, Sanjay C. Solanki, Xin Jin, Aleksander J. Pyzik, Yuanqiao Rao
  • Publication number: 20210031414
    Abstract: The present disclosure provides a process. The process includes providing a blend containing (A) a first powder including (i) a polyolefin having a density from 0.860 g/cc to 0.910 g/cc, and a melt index from 1.5 g/10 min to 1,000 g/10 min; (ii) from 1 wt % to 15 wt % of a dispersant selected from an acrylic dispersant, a poloxamer, and combinations thereof; and (iii) optionally, a polyolefin wax, the first powder having a mean volume average particle size from 1 ?m to 300 ?m; and (B) a second powder including an ethylene/?-olefin copolymer having (i) a density from 0.920 g/cc to 0.955 g/cc; and (ii) a melt index from 1.0 g/10 min to 15 g/10 min, the second powder having a mean volume average particle size from 325 ?m to 4,000 ?m; and rotational molding the blend to form a rotational molded article.
    Type: Application
    Filed: March 15, 2019
    Publication date: February 4, 2021
    Inventors: Russell T. Cooper, Kumar N. Sanketh, Yi Fan, Matthew Bishop, Craig F. Gorin, Daniel L. Dermody
  • Publication number: 20200339763
    Abstract: The present disclosure provides a process including providing a polyolefin aqueous dispersion having (50) to (90) wt % solids content of dispersion, the polyolefin aqueous dispersion containing solid particles containing a polyolefin including an ethylene-based polymer having a melting temperature from greater than (115)° C. to (140)° C., polyolefin wax, acrylic dispersant; and an aqueous phase including excess acrylic dispersant; adding diluting water to form a diluted polyolefin aqueous dispersion having (5) to less than (50) wt % solids content; collecting the solid particles; washing the solid particles with a washing agent to remove the excess acrylic dispersant; and removing the washing agent to form a powder having a mean volume average particle size from (10) to (300) ?m, a sphericity from (0.92) to (1.0), a particle size distribution from (1) to less than (2), a particle density from (98)% to (100)%, and a flow rate in a large funnel from (1) to (5) seconds.
    Type: Application
    Filed: October 22, 2018
    Publication date: October 29, 2020
    Inventors: Craig F. Gorin, Sanjib Biswas, Yi Fan, Thomas L. Tomczak, Daniel L. Dermody, Harpreet Singh
  • Publication number: 20200247010
    Abstract: The present disclosure provides a process. The process includes (i) melt blending, in an extruder, (a) a polyolefin phase and (b) an aqueous phase in the presence of (c) at least one dispersant selected from an acrylic dispersant, a poloxamer dispersant, and combinations thereof; (ii) producing an interfacial tension from 0.1 dynes/cm to 25 dynes/cm; (iii) forming a polyolefin aqueous dispersion having from 25 wt % to 90 wt % solids content of dispersion; and (iv) removing the water from the polyolefin aqueous dispersion to form a powder. The powder has a mean volume average particle size from 10 ?m to 300 ?m, a sphericity from 0.92 to 1.0, a particle size distribution from 1 to less than 2, and a particle density from 98% to 100%.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 6, 2020
    Inventors: Craig F. Gorin, Sanjib Biswas, Manesh Nadupparambil Sekharan, Thomas L. Tomczak, Robert S. Moglia, Daniel L. Dermody, Harpreet Singh, Bryan L. McCulloch
  • Patent number: 10640581
    Abstract: A waterborne sound and vibration damping composition including a waterborne emulsion polymer, the polymer having a calculated acid number of from 2 to 100; from 0.1% to 50%, solids based on emulsion polymer solids, of certain liquid compounds having a boiling point greater than 150° C.; and a solid filler at a level of from 25% to 85% PVC; wherein the waterborne damping composition has a water content of from 6% to 25% by weight is provided. A method for providing a coated substrate using the waterborne damping composition and a substrate so coated are also provided.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: May 5, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kiran K. Baikerikar, Ray E. Drumright, Zhenwen Fu, Justin Gimbal, Craig F. Gorin, Mark Langille
  • Publication number: 20190248065
    Abstract: An additive manufactured article is comprised of at least two adhered layers of extrudates (120) comprised of a thermoset material having therein a phase change material, wherein the phase change material undergoes a phase change at a temperature less than where the thermoset material decomposes. The article may be made by dispensing a mixture comprised of an organic reactive material and phase change material forming extrudates that are 3D printed into an article having multiple layers of extrudates bound together and then allowing the organic reactive material to react forming a thermoset material having therein the phase change material to form the additive manufactured article. The shape of the article may be changed by heating to a temperature above the temperature where the phase change material undergoes a phase change while applying a force and then cooling below the phase change temperature.
    Type: Application
    Filed: June 26, 2017
    Publication date: August 15, 2019
    Inventors: Craig F. Gorin, Aleksander J. Pyzik, Sanjay C. Solanki, Sharon Allen, Daniel P. Sophiea, NIranjan Malvadkar, Daniel L. Dermody
  • Publication number: 20190233335
    Abstract: A porous inorganic additive manufactured article that is comprised of at least two layers of inorganic particulates bound together by a carbon binding phase throughout. The additive manufactured article may be formed by additive manufacturing using a mixture comprised of an organic reactive material and inorganic particulates, wherein the organic reactive material is subsequently reacted to form a thermoset material that forms carbon upon heating that binds the inorganic particulates together to form the porous inorganic additive manufactured article. The porous inorganic additive manufactured article may then be infiltrated with a liquid that is solidified to form a composite article or may be further heated in a differing atmosphere to form a further sintered or reacted porous inorganic article.
    Type: Application
    Filed: June 26, 2017
    Publication date: August 1, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Aleksander J Pyzik, Craig F. Gorin, Janet M. Goss, Sharon Allen, Daniel P. Sophiea