Patents by Inventor Craig F Gorin

Craig F Gorin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200247010
    Abstract: The present disclosure provides a process. The process includes (i) melt blending, in an extruder, (a) a polyolefin phase and (b) an aqueous phase in the presence of (c) at least one dispersant selected from an acrylic dispersant, a poloxamer dispersant, and combinations thereof; (ii) producing an interfacial tension from 0.1 dynes/cm to 25 dynes/cm; (iii) forming a polyolefin aqueous dispersion having from 25 wt % to 90 wt % solids content of dispersion; and (iv) removing the water from the polyolefin aqueous dispersion to form a powder. The powder has a mean volume average particle size from 10 ?m to 300 ?m, a sphericity from 0.92 to 1.0, a particle size distribution from 1 to less than 2, and a particle density from 98% to 100%.
    Type: Application
    Filed: October 22, 2018
    Publication date: August 6, 2020
    Inventors: Craig F. Gorin, Sanjib Biswas, Manesh Nadupparambil Sekharan, Thomas L. Tomczak, Robert S. Moglia, Daniel L. Dermody, Harpreet Singh, Bryan L. McCulloch
  • Patent number: 10640581
    Abstract: A waterborne sound and vibration damping composition including a waterborne emulsion polymer, the polymer having a calculated acid number of from 2 to 100; from 0.1% to 50%, solids based on emulsion polymer solids, of certain liquid compounds having a boiling point greater than 150° C.; and a solid filler at a level of from 25% to 85% PVC; wherein the waterborne damping composition has a water content of from 6% to 25% by weight is provided. A method for providing a coated substrate using the waterborne damping composition and a substrate so coated are also provided.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: May 5, 2020
    Assignees: Dow Global Technologies LLC, Rohm and Haas Company
    Inventors: Kiran K. Baikerikar, Ray E. Drumright, Zhenwen Fu, Justin Gimbal, Craig F. Gorin, Mark Langille
  • Publication number: 20190248065
    Abstract: An additive manufactured article is comprised of at least two adhered layers of extrudates (120) comprised of a thermoset material having therein a phase change material, wherein the phase change material undergoes a phase change at a temperature less than where the thermoset material decomposes. The article may be made by dispensing a mixture comprised of an organic reactive material and phase change material forming extrudates that are 3D printed into an article having multiple layers of extrudates bound together and then allowing the organic reactive material to react forming a thermoset material having therein the phase change material to form the additive manufactured article. The shape of the article may be changed by heating to a temperature above the temperature where the phase change material undergoes a phase change while applying a force and then cooling below the phase change temperature.
    Type: Application
    Filed: June 26, 2017
    Publication date: August 15, 2019
    Inventors: Craig F. Gorin, Aleksander J. Pyzik, Sanjay C. Solanki, Sharon Allen, Daniel P. Sophiea, NIranjan Malvadkar, Daniel L. Dermody
  • Publication number: 20190233335
    Abstract: A porous inorganic additive manufactured article that is comprised of at least two layers of inorganic particulates bound together by a carbon binding phase throughout. The additive manufactured article may be formed by additive manufacturing using a mixture comprised of an organic reactive material and inorganic particulates, wherein the organic reactive material is subsequently reacted to form a thermoset material that forms carbon upon heating that binds the inorganic particulates together to form the porous inorganic additive manufactured article. The porous inorganic additive manufactured article may then be infiltrated with a liquid that is solidified to form a composite article or may be further heated in a differing atmosphere to form a further sintered or reacted porous inorganic article.
    Type: Application
    Filed: June 26, 2017
    Publication date: August 1, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Aleksander J Pyzik, Craig F. Gorin, Janet M. Goss, Sharon Allen, Daniel P. Sophiea
  • Publication number: 20190184628
    Abstract: An additive elastomeric manufactured part having improved surface finish is made by repeatedly extruding through a nozzle to build up layers of a material comprised of a prepolymer comprised of an isocyanate terminated prepolymer and a filler in an amount such that the material has a shear storage modulus G? of 100,000 to 300,000 Pa measured at an oscillation rate of 1 Hz and a relaxation time of 20 seconds to 360 seconds. It has been discovered that the particular material having these rheological properties is able to improve the surface finish of the additive manufactured part without slumping and is believed to be due to surface flow of material into valleys between the extrudates as they are being built up.
    Type: Application
    Filed: May 19, 2017
    Publication date: June 20, 2019
    Inventors: Craig F. Gorin, Janet M. Goss, Aleksander J. Pyzik, Sharon Allen, Sanjay C. Solanki, Daniel P. Sophiea
  • Publication number: 20190106512
    Abstract: A waterborne sound and vibration damping composition including a waterborne emulsion polymer, the polymer having a calculated acid number of from 2 to 100; from 0.1% to 50%, solids based on emulsion polymer solids, of certain liquid compounds having a boiling point greater than 150° C.; and a solid filler at a level of from 25% to 85% PVC; wherein the waterborne damping composition has a water content of from 6% to 25% by weight is provided. A method for providing a coated substrate using the waterborne damping composition and a substrate so coated are also provided.
    Type: Application
    Filed: September 11, 2018
    Publication date: April 11, 2019
    Inventors: Kiran K. Baikerikar, Ray E. Drumright, Zhenwen Fu, Justin Gimbal, Craig F. Gorin, Mark Langille
  • Publication number: 20180362784
    Abstract: An additive elastomeric manufactured part is comprised of extrudates comprised of a reaction product of a multifunctional Michael donor and multifunctional Michael acceptor and a rheological modifier. The additive elastomeric manufactured part may have a high elongation and resistance to heat. Said part may be made by dispensing a mixture of the multifunctional Michael donor, multifunctional Michael acceptor, rheological modifier and a catalyst through a through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the mixture so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base. Subsequent layers are then formed on the initial layer by repeating the dispensing and movement on top of the initial layer and layers that follow.
    Type: Application
    Filed: November 18, 2016
    Publication date: December 20, 2018
    Inventors: Craig F Gorin, Sanjay C. Solanki, Xin Jin, Aleksander J. Pyzik, Yuanqiao Rao